File size: 21,334 Bytes
9a6dac6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
import gc
import os
import yaml
import inspect
import torch
import torch.nn as nn
import numpy as np
from diffusers import DDIMScheduler
from PIL import Image

# from basicsr.utils import tensor2img
from diffusers import AutoencoderKL
from diffusers.utils.torch_utils import randn_tensor
from transformers import (
    CLIPTextModel,
    CLIPTokenizer,
    AutoTokenizer,
    CLIPVisionModelWithProjection,
    CLIPImageProcessor,
    ClapTextModelWithProjection,
    RobertaTokenizer,
    RobertaTokenizerFast,
    SpeechT5HifiGan,
)
from diffusers.utils.import_utils import is_xformers_available


from src.module.unet.unet_2d_condition import (
    CustomUNet2DConditionModel,
    UNet2DConditionModel,
)
from src.module.unet.estimator import _UNet2DConditionModel
from src.utils.inversion import DDIMInversion
from src.module.unet.attention_processor import (
    IPAttnProcessor,
    AttnProcessor,
    Resampler,
)
from src.model.sampler import Sampler
from src.utils.audio_processing import extract_fbank, wav_to_fbank, TacotronSTFT, maybe_add_dimension
import sys
sys.path.append("src/module/tango")
from tools.torch_tools import wav_to_fbank as tng_wav_to_fbank


CWD = os.getcwd()


class TangoPipeline:
    def __init__(
        self,
        sd_id="declare-lab/tango",
        NUM_DDIM_STEPS=100,
        precision=torch.float32,
        device = torch.device("cuda" if torch.cuda.is_available() else "cpu"),
        **kwargs,
    ):
        import sys
        import json
        import torch
        from huggingface_hub import snapshot_download

        sys.path.append("./src/module/tango")
        from tango2.models import AudioDiffusion
        from audioldm.audio.stft import TacotronSTFT as tng_TacotronSTFT
        from audioldm.variational_autoencoder import AutoencoderKL

        path = snapshot_download(repo_id=sd_id)
        vae_config = json.load(open("{}/vae_config.json".format(path)))
        stft_config = json.load(open("{}/stft_config.json".format(path)))
        main_config = json.load(open("{}/main_config.json".format(path)))
        main_config["unet_model_config_path"] = os.path.join(
            CWD, "src/module/tango", main_config["unet_model_config_path"]
        )

        unet = self._set_unet2dconditional_model(
            CustomUNet2DConditionModel,
            unet_model_name=main_config["unet_model_name"],
            unet_model_config_path=main_config["unet_model_config_path"],
        ).to(device)
        feature_estimator = self._set_unet2dconditional_model(
            _UNet2DConditionModel,
            unet_model_name=main_config["unet_model_name"],
            unet_model_config_path=main_config["unet_model_config_path"],
        ).to(device)

        ##### Load pretrained model #####
        vae = AutoencoderKL(**vae_config).to(device)
        vae.dtype = torch.float32  # avoid attribute missing
        stft = tng_TacotronSTFT(**stft_config).to(device)
        model = AudioDiffusion(**main_config).to(device)
        model.unet = unet  # replace unet with the custom unet

        vae_weights = torch.load(
            "{}/pytorch_model_vae.bin".format(path), map_location=device
        )
        stft_weights = torch.load(
            "{}/pytorch_model_stft.bin".format(path), map_location=device
        )
        main_weights = torch.load(
            "{}/pytorch_model_main.bin".format(path), map_location=device
        )

        vae.load_state_dict(vae_weights)
        stft.load_state_dict(stft_weights)
        model.load_state_dict(main_weights)

        unet_weights = {".".join(layer.split(".")[1:]): param for layer, param in model.named_parameters() if "unet" in layer}
        feature_estimator.load_state_dict(unet_weights)

        vae.eval()
        stft.eval()
        model.eval()
        feature_estimator.eval()

        # Free memeory
        del vae_weights
        del stft_weights
        del main_weights
        del unet_weights

        feature_estimator.scheduler = DDIMScheduler.from_pretrained(
            main_config["scheduler_name"], subfolder="scheduler"
        )

        # Create pipeline for audio editing
        onestep_pipe = Sampler(
            vae=vae,
            tokenizer=model.tokenizer,
            text_encoder=model.text_encoder,
            unet=model.unet,
            feature_estimator=feature_estimator,
            scheduler=DDIMScheduler.from_pretrained(
                main_config["scheduler_name"], subfolder="scheduler"
            ),
            device=device,
            precision=precision,
        )
        onestep_pipe.use_cross_attn = True

        gc.collect()
        onestep_pipe.enable_attention_slicing()
        if is_xformers_available():
            onestep_pipe.feature_estimator.enable_xformers_memory_efficient_attention()
            onestep_pipe.enable_xformers_memory_efficient_attention()
        self.pipe = onestep_pipe
        self.fn_STFT = stft

        self.vae_scale_factor = vae_config["ddconfig"]["ch_mult"][-1]
        self.NUM_DDIM_STEPS = NUM_DDIM_STEPS
        self.num_tokens = 512  # flant5
        self.precision = precision
        self.device = device

        # self.load_adapter()  # replace the 1-st self-attn layer with cross-attn difference trajactory

    def _set_unet2dconditional_model(
        self,
        cls_obj: UNet2DConditionModel,
        *,
        unet_model_name=None,
        unet_model_config_path=None,
    ):
        assert (
            unet_model_name is not None or unet_model_config_path is not None
        ), "Either UNet pretrain model name or a config file path is required"

        if unet_model_config_path:
            unet_config = cls_obj.load_config(unet_model_config_path)
            unet = cls_obj.from_config(unet_config, subfolder="unet")
            unet.set_from = "random"
        else:
            unet = cls_obj.from_pretrained(unet_model_name, subfolder="unet")
            unet.set_from = "pre-trained"
            unet.group_in = nn.Sequential(nn.Linear(8, 512), nn.Linear(512, 4))
            unet.group_out = nn.Sequential(nn.Linear(4, 512), nn.Linear(512, 8))

        return unet

    @torch.no_grad()
    def decode_latents(self, latents):
        return self.pipe.vae.decode_first_stage(latents)

    @torch.no_grad()
    def mel_spectrogram_to_waveform(self, mel_spectrogram):
        return self.pipe.vae.decode_to_waveform(mel_spectrogram)

    def get_fbank(self, audio_or_path, stft_cfg, return_intermediate=False):
        r"""Helper function to get fbank from audio file."""
        if isinstance(audio_or_path, torch.Tensor):
            return maybe_add_dimension(audio_or_path, 4)
        
        if isinstance(audio_or_path, str):
            fbank, log_stft, wav = tng_wav_to_fbank(
                [audio_or_path],
                fn_STFT=self.fn_STFT,
                target_length=stft_cfg.filter_length,
            )
            fbank = maybe_add_dimension(fbank, 4)  # (B,C,T,F)

            if return_intermediate:
                return fbank, log_stft, wav
            
            return fbank

    @torch.no_grad()
    def encode_fbank(self, fbank):
        return self.pipe.vae.get_first_stage_encoding(
            self.pipe.vae.encode_first_stage(fbank)
        )

    @torch.no_grad()
    def fbank2latent(self, fbank):
        latent = self.encode_fbank(fbank)
        return latent

    def ddim_inv(self, latent, prompt, emb_im=None, save_kv=True, mode="mix", prediction_type="v_prediction"):
        ddim_inv = DDIMInversion(model=self.pipe, NUM_DDIM_STEPS=self.NUM_DDIM_STEPS)
        ddim_latents = ddim_inv.invert(
            ddim_latents=latent.unsqueeze(2), prompt=prompt, emb_im=emb_im,
            save_kv=save_kv, mode=mode, prediction_type=prediction_type,
        )
        return ddim_latents

    def init_proj(self, precision):
        image_proj_model = Resampler(
            dim=self.pipe.unet.config.cross_attention_dim,
            depth=4,
            dim_head=64,
            heads=12,
            num_queries=self.num_tokens,
            embedding_dim=self.image_encoder.config.hidden_size,
            output_dim=self.pipe.unet.config.cross_attention_dim,
            ff_mult=4,
        ).to("cuda", dtype=precision)
        return image_proj_model

    def load_adapter(self):
        scale = 1.0
        attn_procs = {}
        for name in self.pipe.unet.attn_processors.keys():
            cross_attention_dim = None
            if name.startswith("mid_block"):
                hidden_size = self.pipe.unet.config.block_out_channels[-1]
            elif name.startswith("up_blocks"):
                block_id = int(name[len("up_blocks.")])
                hidden_size = list(reversed(self.pipe.unet.config.block_out_channels))[
                    block_id
                ]
            elif name.startswith("down_blocks"):
                block_id = int(name[len("down_blocks.")])
                hidden_size = self.pipe.unet.config.block_out_channels[block_id]
            # Only the first self-attention should be used for cross-attend different trojactory
            if name.endswith("attn1.processor"):
                attn_procs[name] = AttnProcessor()
            else:
                attn_procs[name] = IPAttnProcessor(
                    hidden_size=hidden_size,
                    cross_attention_dim=cross_attention_dim,
                    scale=scale,
                    num_tokens=self.num_tokens,
                ).to("cuda", dtype=self.precision)
        self.pipe.unet.set_attn_processor(attn_procs)


class AudioLDMPipeline:
    def __init__(
        self,
        sd_id="cvssp/audioldm-l-full",
        ip_id="cvssp/audioldm-l-full",
        NUM_DDIM_STEPS=50,
        precision=torch.float32,
        ip_scale=0,
        device = torch.device("cuda" if torch.cuda.is_available() else "cpu"),
    ):
        onestep_pipe = Sampler(
            vae=AutoencoderKL.from_pretrained(
                sd_id, subfolder="vae", torch_dtype=precision
            ),
            tokenizer=RobertaTokenizerFast.from_pretrained(
                sd_id, subfolder="tokenizer"
            ),
            text_encoder=ClapTextModelWithProjection.from_pretrained(
                sd_id, subfolder="text_encoder", torch_dtype=precision
            ),
            unet=CustomUNet2DConditionModel.from_pretrained(
                sd_id, subfolder="unet", torch_dtype=precision
            ),
            feature_estimator=_UNet2DConditionModel.from_pretrained(
                sd_id,
                subfolder="unet",
                vae=None,
                text_encoder=None,
                tokenizer=None,
                scheduler=DDIMScheduler.from_pretrained(sd_id, subfolder="scheduler"),
                safety_checker=None,
                feature_extractor=None,
            ),
            scheduler=DDIMScheduler.from_pretrained(sd_id, subfolder="scheduler"),
            device=device,
            precision=precision,
        )

        onestep_pipe.vocoder = SpeechT5HifiGan.from_pretrained(
            sd_id, subfolder="vocoder", torch_dtype=precision
        )

        onestep_pipe.use_cross_attn = False
        gc.collect()
        device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
        onestep_pipe = onestep_pipe.to(device)
        onestep_pipe.vocoder.to(device)
        onestep_pipe.enable_attention_slicing()
        if is_xformers_available():
            onestep_pipe.feature_estimator.enable_xformers_memory_efficient_attention()
            onestep_pipe.enable_xformers_memory_efficient_attention()

        self.pipe = onestep_pipe
        self.vae_scale_factor = 2 ** (len(self.pipe.vae.config.block_out_channels) - 1)
        self.NUM_DDIM_STEPS = NUM_DDIM_STEPS
        self.precision = precision
        self.device = device
        self.num_tokens = 64

        # This is fixed as per pretrained model
        self.fn_STFT = TacotronSTFT(
            filter_length=1024,
            hop_length=160,
            win_length=1024,
            n_mel_channels=64,
            sampling_rate=16000,
            mel_fmin=0,
            mel_fmax=8000,
        )

        # self.load_adapter()

    @torch.no_grad()
    def decode_latents(self, latents):
        latents = 1 / self.pipe.vae.config.scaling_factor * latents
        mel_spectrogram = self.pipe.vae.decode(latents).sample
        return mel_spectrogram

    @torch.no_grad()
    def mel_spectrogram_to_waveform(self, mel_spectrogram):
        if mel_spectrogram.dim() == 4:
            mel_spectrogram = mel_spectrogram.squeeze(1)

        waveform = self.pipe.vocoder(
            mel_spectrogram.to(device=self.device, dtype=self.precision)
        )
        # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16
        waveform = waveform.cpu().float()
        return waveform

    @torch.no_grad()
    def fbank2latent(self, fbank):
        latent = self.encode_fbank(fbank)
        return latent

    def get_fbank(self, audio_or_path, stft_cfg, return_intermediate=False):
        r"""Helper function to get fbank from audio file."""
        if isinstance(audio_or_path, torch.Tensor):
            return maybe_add_dimension(audio_or_path, 3)
        
        if isinstance(audio_or_path, str):
            fbank, log_stft, wav = extract_fbank(
                audio_or_path,
                fn_STFT=self.fn_STFT,
                target_length=stft_cfg.filter_length,
                hop_size=stft_cfg.hop_length,
            )
            fbank = maybe_add_dimension(fbank, 3)  # (C,T,F)

            if return_intermediate:
                return fbank, log_stft, wav
            
            return fbank

    def wav2fbank(self, wav, target_length):
        fbank, log_magnitudes_stft = wav_to_fbank(wav, target_length, self.fn_STFT)
        return fbank, log_magnitudes_stft

    @torch.no_grad()
    def encode_fbank(self, fbank):
        latent = self.pipe.vae.encode(fbank)["latent_dist"].mean
        # NOTE: Scale the noise latent
        latent = latent * self.pipe.scheduler.init_noise_sigma
        return latent

    def ddim_inv(self, latent, prompt, emb_im=None, save_kv=True, mode="mix", prediction_type="epsilon"):
        ddim_inv = DDIMInversion(model=self.pipe, NUM_DDIM_STEPS=self.NUM_DDIM_STEPS)
        ddim_latents = ddim_inv.invert(
            ddim_latents=latent.unsqueeze(2), prompt=prompt, emb_im=emb_im,
            save_kv=save_kv, mode=mode, prediction_type=prediction_type
        )
        return ddim_latents
    
    def init_proj(self, precision):
        image_proj_model = Resampler(
            dim=self.pipe.unet.config.cross_attention_dim,
            depth=4,
            dim_head=64,
            heads=12,
            num_queries=self.num_tokens,
            embedding_dim=self.image_encoder.config.hidden_size,
            output_dim=self.pipe.unet.config.cross_attention_dim,
            ff_mult=4,
        ).to("cuda", dtype=precision)
        return image_proj_model

    # @torch.inference_mode()
    # def get_image_embeds(self, pil_image):
    #     if isinstance(pil_image, Image.Image):
    #         pil_image = [pil_image]
    #     clip_image = self.clip_image_processor(images=pil_image, return_tensors="pt").pixel_values
    #     clip_image = clip_image.to('cuda', dtype=self.precision)
    #     clip_image_embeds = self.image_encoder(clip_image, output_hidden_states=True).hidden_states[-2]
    #     image_prompt_embeds = self.image_proj_model(clip_image_embeds)
    #     uncond_clip_image_embeds = self.image_encoder(torch.zeros_like(clip_image), output_hidden_states=True).hidden_states[-2].detach()
    #     uncond_image_prompt_embeds = self.image_proj_model(uncond_clip_image_embeds).detach()
    #     return image_prompt_embeds, uncond_image_prompt_embeds

    def load_adapter(self):
        scale = 1.0
        attn_procs = {}
        for name in self.pipe.unet.attn_processors.keys():
            cross_attention_dim = None
            if name.startswith("mid_block"):
                hidden_size = self.pipe.unet.config.block_out_channels[-1]
            elif name.startswith("up_blocks"):
                block_id = int(name[len("up_blocks.")])
                hidden_size = list(reversed(self.pipe.unet.config.block_out_channels))[
                    block_id
                ]
            elif name.startswith("down_blocks"):
                block_id = int(name[len("down_blocks.")])
                hidden_size = self.pipe.unet.config.block_out_channels[block_id]
            # Only the first self-attention should be used for cross-attend different trojactory
            if name.endswith("attn1.processor"):
                attn_procs[name] = AttnProcessor()
            else:
                attn_procs[name] = IPAttnProcessor(
                    hidden_size=hidden_size,
                    cross_attention_dim=cross_attention_dim,
                    scale=scale,
                    num_tokens=self.num_tokens,
                ).to("cuda", dtype=self.precision)
                
        self.pipe.unet.set_attn_processor(attn_procs)

    # def load_adapter(self, model_path, scale=1.0):
    #     from src.unet.attention_processor import IPAttnProcessor, AttnProcessor, Resampler
    #     attn_procs = {}
    #     for name in self.pipe.unet.attn_processors.keys():
    #         cross_attention_dim = None if name.endswith("attn1.processor") else self.pipe.unet.config.cross_attention_dim
    #         if name.startswith("mid_block"):
    #             hidden_size = self.pipe.unet.config.block_out_channels[-1]
    #         elif name.startswith("up_blocks"):
    #             block_id = int(name[len("up_blocks.")])
    #             hidden_size = list(reversed(self.pipe.unet.config.block_out_channels))[block_id]
    #         elif name.startswith("down_blocks"):
    #             block_id = int(name[len("down_blocks.")])
    #             hidden_size = self.pipe.unet.config.block_out_channels[block_id]
    #         if cross_attention_dim is None:
    #             attn_procs[name] = AttnProcessor()
    #         else:
    #             attn_procs[name] = IPAttnProcessor(hidden_size=hidden_size, cross_attention_dim=cross_attention_dim,
    #             scale=scale,num_tokens= self.num_tokens).to('cuda', dtype=self.precision)
    #     self.pipe.unet.set_attn_processor(attn_procs)
    #     state_dict = torch.load(model_path, map_location="cpu")
    #     self.image_proj_model.load_state_dict(state_dict["image_proj"], strict=True)
    #     ip_layers = torch.nn.ModuleList(self.pipe.unet.attn_processors.values())
    #     ip_layers.load_state_dict(state_dict["ip_adapter"], strict=True)

    # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_extra_step_kwargs
    def prepare_extra_step_kwargs(self, generator, eta):
        # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
        # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
        # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
        # and should be between [0, 1]

        accepts_eta = "eta" in set(
            inspect.signature(self.pipe.scheduler.step).parameters.keys()
        )
        extra_step_kwargs = {}
        if accepts_eta:
            extra_step_kwargs["eta"] = eta

        # check if the scheduler accepts generator
        accepts_generator = "generator" in set(
            inspect.signature(self.pipe.scheduler.step).parameters.keys()
        )
        if accepts_generator:
            extra_step_kwargs["generator"] = generator
        return extra_step_kwargs

    # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_latents with width->self.vocoder.config.model_in_dim
    def prepare_latents(
        self,
        batch_size,
        num_channels_latents,
        height,
        dtype,
        device,
        generator,
        latents=None,
    ):
        shape = (
            batch_size,
            num_channels_latents,
            height // self.vae_scale_factor,
            self.pipe.vocoder.config.model_in_dim // self.vae_scale_factor,
        )
        if isinstance(generator, list) and len(generator) != batch_size:
            raise ValueError(
                f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
                f" size of {batch_size}. Make sure the batch size matches the length of the generators."
            )

        if latents is None:
            latents = randn_tensor(
                shape, generator=generator, device=device, dtype=dtype
            )
        else:
            latents = latents.to(device)

        # scale the initial noise by the standard deviation required by the scheduler
        latents = latents * self.pipe.scheduler.init_noise_sigma
        return latents


if __name__ == "__main__":
    # pipeline = AudioLDMPipeline(
    #     sd_id="cvssp/audioldm-l-full", ip_id="cvssp/audioldm-l-full", NUM_DDIM_STEPS=50
    # )
    pipeline = TangoPipeline(
        sd_id="declare-lab/tango",
        ip_id="declare-lab/tango",
        NUM_DDIM_STEPS=50,
        precision=torch.float16,
    )
    print(pipeline.__dict__)