File size: 14,186 Bytes
9a6dac6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
import os
import torch
import torchaudio
from torch import Tensor
from typing import Any, Callable, List
from random import randint, uniform, betavariate


class NaiveAudioProcessor:
    __doc__ = r"""A naive processor for audio processor."""

    def __call__(self, filename, filename2=None):
        return self.extract_features(filename, filename2)

    def extract_features(self, filename, filename2=None):
        r"""Dummy func to extract features."""
        return {}

    @staticmethod
    def torchaudio_to_byte(
        audio: torch.Tensor,
        sampling_rate: int,
        cache_path="./.tmp.flac",
    ):
        torchaudio.save(
            filepath=cache_path,
            src=audio,
            sample_rate=sampling_rate,
        )

        with open(cache_path, "rb") as f:
            audio_stream = f.read()

        os.remove(cache_path)

        return audio_stream


class WaveformAudioProcessor(NaiveAudioProcessor):
    __doc__ = r"""A processor to load wavform from audio files."""

    def __init__(
        self,
        sampling_rate: int = 16000,
        duration: float = 10.24,
        normalize: bool = True,
        trim_wav: bool = True,
        transforms: List[Callable] = [],
    ):
        self.sampling_rate = sampling_rate
        self.audio_duration = duration
        self.normalize = normalize
        self.trim_wav = trim_wav
        # Data augmentation
        self.transforms = transforms

    def extract_features(self, filename, filename2=None):
        r"""Return waveform."""
        wav = self.load_wav(
            filename,
            sampling_rate=self.sampling_rate,
            normalize=self.normalize,
            trim_wav=self.trim_wav,
        )

        # Mix two wavs if `filename2` is given
        if filename2 is not None:
            wav2 = self.load_wav(
                filename2,
                sampling_rate=self.sampling_rate,
                normalize=self.normalize,
                trim_wav=self.trim_wav,
            )
            mixture, mix_lambda = self.mix_wavs(wav, wav2)
        else:
            mixture = wav

        # Data augmentatioin if applicable
        if len(self.transforms) > 0:
            for transform in self.transforms:
                mixture = transform(mixture)

        return {"waveform": mixture}

    def load_wav(
        self,
        wav_file: str,
        sampling_rate: int = 16000,
        normalize: bool = True,
        trim_wav: bool = False,
    ) -> list:
        r"""Return (torch.Tensor, float), Tensor shape = (c, n_temporal_step)."""
        audio, sr = torchaudio.load(wav_file)

        # Resample the audio if `resample` = True
        if sr != sampling_rate:
            audio = torchaudio.functional.resample(
                audio,
                orig_freq=sr,
                new_freq=self.sampling_rate,
            )

        # Detect the activate clip from audio if `trim_wav` = True
        if trim_wav:
            audio = self.maybe_trim_wav(audio)

        # Uniform the length of output wavs
        target_length = int(self.audio_duration * sr)
        if len(audio) < target_length:
            audio = self.pad_wav(audio, target_length, pad_last=True)
        elif len(audio) > target_length:
            audio = self.segment_wav(audio, target_length, truncation="right")

        # Z-nomalize the output wavs if `normalize` = True
        if normalize:
            try:
                audio = self.normalize_wav(audio)
            except RuntimeError as e:
                print(f"{e}: {wav_file} is empty.")

        return audio

    @staticmethod
    def normalize_wav(waveform: Tensor, eps=torch.tensor(1e-8)):
        r"""Return wavform with mean=0, std=0.5."""
        waveform = waveform - waveform.mean()
        waveform = waveform / torch.max(waveform.abs() + eps)

        return waveform * 0.5  # manually limit the maximum amplitude into 0.5

    @staticmethod
    def mix_wavs(waveform1, waveform2, alpha=10, beta=10):
        mix_lambda = betavariate(alpha, beta)
        mix_waveform = mix_lambda * waveform1 + (1 - mix_lambda) * waveform2

        return __class__.normalize_wav(mix_waveform), mix_lambda

    @staticmethod
    def split_wavs(waveform, target_length, padding_mode="zeros"):
        r"""Split wav into several pieces with the length `target_length`.
        Args: `waveform` is a 2d channel-first tensor.
        """
        segmented_wavs = []
        n_channels, wav_length = waveform.size()
        for stt_idx in range(0, wav_length, target_length):
            end_idx = stt_idx + target_length
            if end_idx > wav_length:
                # NOTE: Drop the last seg if it is too short
                if (wav_length - stt_idx) < 0.1 * target_length:
                    break
                # Pad the last seg with the content in the previous one
                if padding_mode == "replicate":
                    segmented_wavs.append(waveform[:, -target_length:])
                else:
                    assert padding_mode == "zeros"
                    _tmp_wav = waveform[:, stt_idx:]
                    _padded_wav = torch.zeros(n_channels, wav_length)
                    _padded_wav[:, : _tmp_wav.size(dim=-1)] += _tmp_wav
                    segmented_wavs.append(_padded_wav)
            else:
                segmented_wavs.append(waveform[:, stt_idx:end_idx])

        return segmented_wavs

    @staticmethod
    def segment_wav(
        waveform,
        target_length,
        truncation="right",
    ):
        r"""Return semented wav of `target_length` and the start time of the segmentation."""
        assert truncation in ["left", "right", "random"]

        waveform_length = waveform.shape[-1]
        assert waveform_length > 100, "Waveform is too short, %s" % waveform_length

        # Too short
        if (waveform_length - target_length) <= 0:
            return waveform, 0

        # Try at most 10 times to find a valid start index
        for i in range(10):
            if truncation == "left":
                start_index = waveform_length - target_length
            elif truncation == "right":
                start_index = 0
            else:
                start_index = randint(0, waveform_length - target_length)

            if torch.max(
                torch.abs(waveform[:, start_index : start_index + target_length]) > 1e-4
            ):
                break

        return waveform[:, start_index : start_index + target_length], start_index

    @staticmethod
    def pad_wav(waveform, target_length, pad_last=True):
        waveform_length = waveform.shape[-1]
        assert waveform_length > 100, "Waveform is too short, {waveform_length}"

        if waveform_length == target_length:
            return waveform

        # Pad
        output_wav = torch.zeros((1, target_length), dtype=torch.float32)

        if not pad_last:
            rand_start = randint(0, target_length - waveform_length)
        else:
            rand_start = 0

        output_wav[:, rand_start : rand_start + waveform_length] = waveform
        return output_wav

    @staticmethod
    def maybe_trim_wav(waveform):
        r"""Trim the wav by remove the silence part."""
        if waveform.abs().max() < 0.0001:
            return waveform

        def detect_leading_silence(waveform, threshold=1e-4):
            chunk_size = 1000
            waveform_length = waveform.shape[0]

            start = 0
            while start + chunk_size < waveform_length:
                if waveform[start : start + chunk_size].abs().max() < threshold:
                    start += chunk_size
                else:
                    break

            return start

        def detect_ending_silence(waveform, threshold=1e-4):
            chunk_size = 1000
            waveform_length = waveform.shape[0]
            start = waveform_length

            while start - chunk_size > 0:
                if waveform[start - chunk_size : start].abs().max() < threshold:
                    start -= chunk_size
                else:
                    break

            if start == waveform_length:
                return start
            else:
                return start + chunk_size

        start = detect_leading_silence(waveform)
        end = detect_ending_silence(waveform)

        return waveform[start:end]


class FbankAudioProcessor(WaveformAudioProcessor):
    def __init__(
        self,
        # Fbank setting
        n_frames: int = 1024,
        n_mels: int = 128,
        # Waveform setting
        sampling_rate: int = 16000,
        duration: float = 10.24,
        normalize: bool = True,
        trim_wav: bool = True,
        # Data augmentation
        transforms: List[Callable] = [],
    ):
        super().__init__(sampling_rate, duration, normalize, trim_wav)
        self.n_frames = n_frames
        self.n_mels = n_mels
        # Data augmentation
        self.transforms = transforms

    def extract_features(self, filename, filename2=None):
        wav = self.load_wav(
            filename,
            sampling_rate=self.sampling_rate,
            normalize=self.normalize,
            trim_wav=self.trim_wav,
        )

        # Mix two wavs if `filename2` is given
        if filename2 is not None:
            wav2 = self.load_wav(
                filename2,
                sampling_rate=self.sampling_rate,
                normalize=self.normalize,
                trim_wav=self.trim_wav,
            )
            mixture, mix_lambda = self.mix_wavs(wav, wav2)
        else:
            mixture = wav

        # Get fbank from the `mixture`
        # shape of `fbank` = (`n_frames`, `n_mels`)
        fbank = self.wav2fbank(
            mixture,
            self.n_frames,
            self.n_mels,
            self.sampling_rate,
        )

        # Transform fbank for data augemtnation if applicable
        if len(self.transforms) > 0:
            for transform in self.transforms:
                fbank = transform(fbank)

        return {"waveform": mixture, "fbank": fbank}

    def wav2fbank(
        self,
        wav,
        n_frames=1024,
        n_mels=128,
        sampling_rate=16000,
        norm_mean=-4.2677393,
        norm_std=4.5689974,
    ):
        try:
            fbank = torchaudio.compliance.kaldi.fbank(
                wav,
                htk_compat=True,
                sample_frequency=sampling_rate,
                use_energy=False,
                window_type="hanning",
                num_mel_bins=n_mels,
                dither=0.0,
                frame_shift=10,
            )
        except AssertionError as e:
            fbank = torch.zeros([n_frames, n_mels]) + 0.01
            print(f"A empty fbank loaded as {e}.")

        # Cut and pad to the length of `n_frames`
        return self.pad_or_clip_fbank(fbank, n_frames)

    @staticmethod
    def pad_fbank(fbank, padding_length):
        m = torch.nn.ZeroPad2d((0, 0, 0, padding_length))
        return m(fbank)

    @staticmethod
    def clip_fbank(fbank, target_length):
        return fbank[0:target_length, :]

    @staticmethod
    def pad_or_clip_fbank(fbank, target_length):
        p = target_length - fbank.shape[0]  # target_length - curr_n_frames
        if p > 0:
            return __class__.pad_fbank(fbank, p)
        else:
            return __class__.clip_fbank(fbank, target_length)


class AddGaussianNoise:
    def __init__(self, noise_magnitude=uniform(0, 1) * 0.1):
        self.noise_magnitude = noise_magnitude

    def __call__(self, fbank):
        d0, d1 = fbank.size()
        return fbank + torch.rand(d0, d1) * self.noise_magnitude


class TimeRolling:
    def __init__(self, rolling_step=None):
        self.rs = rolling_step

    def __call__(self, fbank):
        return torch.roll(fbank, randint(-self.rs, self.rs - 1), 0)


class FbankTimeMasking:
    __doc__ = r"""Masking the time dimension of fbank for data augmentation
    with the length ranged of (0, `timem`)."""

    def __init__(self, timem: int = 0):
        from torchaudio.transforms import TimeMasking

        self.mask_fn = TimeMasking(timem)

    def __call__(self, fbank) -> Tensor:
        fbank = torch.transpose(fbank, 0, 1)
        fbank = fbank.unsqueeze(0)

        fbank = self.mask_fn(fbank)

        fbank = fbank.squeeze(0)
        fbank = torch.transpose(fbank, 0, 1)
        return fbank


class FbankFrequencyMasking:
    __doc__ = r"""Masking the frequency dimension of fbank for data augmentation
    with the length ranged of (0, `freqm`)."""

    def __init__(self, freqm: int = 0):
        from torchaudio.transforms import FrequencyMasking

        self.mask_fn = FrequencyMasking(freqm)

    def __call__(self, fbank) -> Tensor:
        fbank = torch.transpose(fbank, 0, 1)
        fbank = fbank.unsqueeze(0)

        fbank = self.mask_fn(fbank)

        fbank = fbank.squeeze(0)
        fbank = torch.transpose(fbank, 0, 1)
        return fbank


class SpecAugment:
    __doc__ = r"""Masking the time & frequency dimension of fbank for data augmentation
    with the length ranged of (0, `timem`), (0, `freqm`), respectively."""

    def __init__(self, timem: int = 0, freqm: int = 0) -> None:
        from torchaudio.transforms import TimeMasking, FrequencyMasking

        self.time_mask_fn = TimeMasking(timem)
        self.freq_mask_fn = FrequencyMasking(freqm)

    def __call__(self, fbank) -> Tensor:
        fbank = torch.transpose(fbank, 0, 1)
        fbank = fbank.unsqueeze(0)

        fbank = self.time_mask_fn(fbank)
        fbank = self.freq_mask_fn(fbank)

        fbank = fbank.squeeze(0)
        fbank = torch.transpose(fbank, 0, 1)
        return fbank


if __name__ == "__main__":
    import debugger

    wav_file = (
        "/mnt/bn/lqhaoheliu/datasets/audioset/zip_audios/eval_segments/Y-53zl3bPmpM.wav"
    )
    wav_file2 = (
        "/mnt/bn/lqhaoheliu/datasets/audioset/zip_audios/eval_segments/Y-6Aq2fJwlgU.wav"
    )

    audio_processor = FbankAudioProcessor(transforms=[SpecAugment(1024, 128)])
    # print(audio_processor(wav_file, wav_file2)[0].shape)
    # print(audio_processor(wav_file, wav_file2)[1].shape)
    print(audio_processor(wav_file, wav_file2)[1])