Spaces:
Running
on
Zero
Running
on
Zero
File size: 7,995 Bytes
9a6dac6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 |
import os
import yaml
import random
import torch
import torchaudio
import json
import numpy as np
import pandas as pd
import torch.nn.functional as F
from torch.utils.data import Dataset
from .processors import NaiveAudioProcessor, WaveformAudioProcessor, FbankAudioProcessor
from ..utils import load_json
def label2caption(label, background_sound=None, template="{} can be heard"):
r"""This is a helper function converting list of labels to captions."""
if background_sound is None:
return [template.format(", ".join(l)) for l in label]
if isinstance(background_sound, str):
background_sound = [[background_sound]] * len(label)
assert len(label) == len(
background_sound
), "the number of `background_sound` should match the number of `label`."
caption = []
for l, bg in zip(label, background_sound):
cap = template.format(", ".join(l))
cap += " with the background sounds of {}".format(", ".join(bg))
caption.append(cap)
return caption
class AudioDataset(Dataset):
def __init__(
self,
metadata_root: str = "/mnt/bn/lqhaoheliu/metadata/processed/dataset_root.json",
dataset_name: list = ["audioset"],
split: str = "train",
include_caption: bool = True,
enable_mixup: bool = False,
audio_processor: NaiveAudioProcessor = NaiveAudioProcessor(),
):
"""
Dataset that manages audio recordings.
:param audio_conf: Dictionary containing the audio loading and preprocessing settings
:param dataset_json_file
"""
self.metadata_root = load_json(metadata_root)
self.dataset_name = dataset_name
self.split = split
self.include_caption = include_caption
self.audio_processor = audio_processor
self.enable_mixup = enable_mixup
self.mixture_caption_template = "{} | {}"
if self.enable_mixup:
print(
f"Template for the caption of mixture is: {self.mixture_caption_template}"
)
self.build_dataset()
print("Dataset initialization finished.")
def __getitem__(self, index):
datum = self.data[index]
fname = datum["wav"] # base name of the wav file
mix_datum = {"wav": None}
if self.enable_mixup:
if random.random() > 0.5:
mix_datum = self.data[random.randint(0, len(self.data) - 1)]
fname += " " + mix_datum["wav"]
data = {"fname": fname}
if self.include_caption:
caption = self.get_caption_from_datum(
datum,
mix_datum,
template_description=self.mixture_caption_template,
)
data.update({"caption": caption})
data.update(self.audio_processor(datum["wav"], mix_datum["wav"]))
return data
def text_to_filename(self, text):
return text.replace(" ", "_").replace("'", "_").replace('"', "_")
def get_dataset_root_path(self, dataset):
assert dataset in self.metadata_root.keys()
return self.metadata_root[dataset]
def get_dataset_metadata_path(self, dataset, key):
# key: train, test, val, class_label_indices
try:
if dataset in self.metadata_root["metadata"]["path"].keys():
return self.metadata_root["metadata"]["path"][dataset][key]
except:
raise ValueError(
'Dataset %s does not metadata "%s" specified' % (dataset, key)
)
def __len__(self):
return len(self.data)
def _relative_path_to_absolute_path(self, metadata, dataset_name):
root_path = self.get_dataset_root_path(dataset_name)
for i in range(len(metadata["data"])):
assert "wav" in metadata["data"][i].keys(), metadata["data"][i]
assert metadata["data"][i]["wav"][0] != "/", (
"The dataset metadata should only contain relative path to the audio file: "
+ str(metadata["data"][i]["wav"])
)
metadata["data"][i]["wav"] = os.path.join(
root_path, metadata["data"][i]["wav"]
)
return metadata
def build_dataset(self):
self.data = []
print("Build dataset split %s from %s" % (self.split, self.dataset_name))
if type(self.dataset_name) is str:
data_json = load_json(
self.get_dataset_metadata_path(self.dataset_name, key=self.split)
)
data_json = self._relative_path_to_absolute_path(
data_json, self.dataset_name
)
self.data = data_json["data"]
elif type(self.dataset_name) is list:
for dataset_name in self.dataset_name:
data_json = load_json(
self.get_dataset_metadata_path(dataset_name, key=self.split)
)
data_json = self._relative_path_to_absolute_path(
data_json, dataset_name
)
self.data += data_json["data"]
else:
raise Exception("Invalid data format")
print("Data size: {}".format(len(self.data)))
def is_contain_caption(self, datum):
if datum is not None:
caption_keys = [x for x in datum.keys() if ("caption" in x)]
return len(caption_keys) > 0
else:
return False
def _read_datum_caption(self, datum):
if datum is not None:
caption_keys = [x for x in datum.keys() if ("caption" in x)]
random_index = torch.randint(0, len(caption_keys), (1,))[0].item()
return datum[caption_keys[random_index]]
else:
return "" # NOTE: return empty string if datum is not provided
def label_indices_to_text(
self,
datum,
label_indices,
template_description: str = "{}", # e.g., "This audio contains the sound of {}"
):
if self.is_contain_caption(datum):
return self._read_datum_caption(datum)
elif "label" in datum.keys():
name_indices = torch.where(label_indices > 0.1)[0]
labels = ""
for id, each in enumerate(name_indices):
if id == len(name_indices) - 1:
labels += "%s." % self.num2label[int(each)]
else:
labels += "%s, " % self.num2label[int(each)]
return template_description.format(labels)
else:
return "" # NOTE: return empty string if both label and caption are not provided
def get_sample_text_caption(self, datum, mix_datum, label_indices):
text = self.label_indices_to_text(datum, label_indices)
if mix_datum is not None:
text += " " + self.label_indices_to_text(mix_datum, label_indices)
return text
def get_caption_from_datum(
self, datum, mix_datum=None, template_description="{} {}"
):
caption = ""
if self.is_contain_caption(datum):
caption += self._read_datum_caption(datum)
# Mixup the caption if `mix_datum` is not None
if mix_datum is not None and self.is_contain_caption(mix_datum):
mix_caption = self._read_datum_caption(mix_datum)
caption = template_description.format(caption, mix_caption)
return caption
if __name__ == "__main__":
import torch
from tqdm import tqdm
from torch.utils.data import DataLoader
dataset = AudioDataset(
dataset_name=["audiocaps"],
include_caption=True,
enable_mixup=True,
audio_processor=FbankAudioProcessor(),
)
loader = DataLoader(dataset, batch_size=2, num_workers=0, shuffle=True)
for cnt, each in tqdm(enumerate(loader)):
# print(each["waveform"].size(), each["log_mel_spec"].size())
# print(each['freq_energy_percentile'])
import ipdb
ipdb.set_trace()
|