Choiszt commited on
Commit
7673e3b
·
1 Parent(s): 5780af0

test egogpt

Browse files
Files changed (1) hide show
  1. app.py +453 -48
app.py CHANGED
@@ -1,64 +1,469 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  import gradio as gr
2
- from huggingface_hub import InferenceClient
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4
  """
5
- For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
 
 
 
 
 
 
 
 
 
 
6
  """
7
- client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
8
 
 
9
 
10
- def respond(
11
- message,
12
- history: list[tuple[str, str]],
13
- system_message,
14
- max_tokens,
15
- temperature,
16
- top_p,
17
- ):
18
- messages = [{"role": "system", "content": system_message}]
19
 
20
- for val in history:
21
- if val[0]:
22
- messages.append({"role": "user", "content": val[0]})
23
- if val[1]:
24
- messages.append({"role": "assistant", "content": val[1]})
 
 
 
 
 
25
 
26
- messages.append({"role": "user", "content": message})
 
 
 
27
 
28
- response = ""
 
29
 
30
- for message in client.chat_completion(
31
- messages,
32
- max_tokens=max_tokens,
33
- stream=True,
34
- temperature=temperature,
35
- top_p=top_p,
36
- ):
37
- token = message.choices[0].delta.content
38
 
39
- response += token
40
- yield response
 
 
 
 
 
 
41
 
 
42
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
43
  """
44
- For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
45
- """
46
- demo = gr.ChatInterface(
47
- respond,
48
- additional_inputs=[
49
- gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
50
- gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
51
- gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
52
- gr.Slider(
53
- minimum=0.1,
54
- maximum=1.0,
55
- value=0.95,
56
- step=0.05,
57
- label="Top-p (nucleus sampling)",
58
- ),
59
- ],
60
- )
61
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
62
 
63
- if __name__ == "__main__":
64
- demo.launch()
 
1
+ ### ----------------- ###
2
+ # Standard library imports
3
+ import os
4
+ import re
5
+ import sys
6
+ import copy
7
+ import warnings
8
+ from typing import Optional
9
+
10
+ # Third-party imports
11
+ import numpy as np
12
+ import torch
13
+ import torch.distributed as dist
14
+ import uvicorn
15
+ import librosa
16
+ import whisper
17
+ import requests
18
+ from fastapi import FastAPI
19
+ from pydantic import BaseModel
20
+ from decord import VideoReader, cpu
21
+ from transformers import AutoModelForCausalLM, AutoTokenizer
22
+
23
  import gradio as gr
24
+ import spaces
25
+
26
+ # Local imports
27
+ from egogpt.model.builder import load_pretrained_model
28
+ from egogpt.mm_utils import get_model_name_from_path, process_images
29
+ from egogpt.constants import (
30
+ IMAGE_TOKEN_INDEX,
31
+ DEFAULT_IMAGE_TOKEN,
32
+ IGNORE_INDEX,
33
+ SPEECH_TOKEN_INDEX,
34
+ DEFAULT_SPEECH_TOKEN
35
+ )
36
+ from egogpt.conversation import conv_templates, SeparatorStyle
37
+
38
+
39
+ # pretrained = "/mnt/sfs-common/jkyang/EgoGPT/checkpoints/EgoGPT-llavaov-7b-EgoIT-109k-release"
40
+ pretrained = "/mnt/sfs-common/jkyang/EgoGPT/checkpoints/EgoGPT-llavaov-7b-EgoIT-EgoLife-Demo"
41
+ device = "cuda"
42
+ device_map = "cuda"
43
 
44
+ # Add this initialization code before loading the model
45
+ def setup(rank, world_size):
46
+ os.environ['MASTER_ADDR'] = 'localhost'
47
+ os.environ['MASTER_PORT'] = '12377'
48
+
49
+ # initialize the process group
50
+ dist.init_process_group("gloo", rank=rank, world_size=world_size)
51
+
52
+ setup(0,1)
53
+ tokenizer, model, max_length = load_pretrained_model(pretrained,device_map=device_map)
54
+ device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
55
+ model.to(device).eval()
56
+
57
+ title_markdown = """
58
+ <div style="display: flex; justify-content: space-between; align-items: center; background: linear-gradient(90deg, rgba(72,219,251,0.1), rgba(29,209,161,0.1)); border-radius: 20px; box-shadow: 0 4px 6px rgba(0,0,0,0.1); padding: 20px; margin-bottom: 20px;">
59
+ <div style="display: flex; align-items: center;">
60
+ <a href="https://egolife-ntu.github.io/" style="margin-right: 20px; text-decoration: none; display: flex; align-items: center;">
61
+ <img src="https://egolife-ntu.github.io/egolife.png" alt="EgoLife" style="max-width: 100px; height: auto; border-radius: 15px; box-shadow: 0 2px 4px rgba(0,0,0,0.1);">
62
+ </a>
63
+ <div>
64
+ <h1 style="margin: 0; background: linear-gradient(90deg, #48dbfb, #1dd1a1); -webkit-background-clip: text; -webkit-text-fill-color: transparent; font-size: 2.5em; font-weight: 700;">EgoLife</h1>
65
+ <h2 style="margin: 10px 0; color: #2d3436; font-weight: 500;">Towards Egocentric Life Assistant</h2>
66
+ <div style="display: flex; gap: 15px; margin-top: 10px;">
67
+ <a href="https://egolife-ntu.github.io/" style="text-decoration: none; color: #48dbfb; font-weight: 500; transition: color 0.3s;">Project Page</a> |
68
+ <a href="https://github.com/egolife-ntu/EgoGPT" style="text-decoration: none; color: #48dbfb; font-weight: 500; transition: color 0.3s;">Github</a> |
69
+ <a href="https://huggingface.co/lmms-lab" style="text-decoration: none; color: #48dbfb; font-weight: 500; transition: color 0.3s;">Huggingface</a> |
70
+ <a href="https://arxiv.org/" style="text-decoration: none; color: #48dbfb; font-weight: 500; transition: color 0.3s;">Paper</a> |
71
+ <a href="https://x.com/" style="text-decoration: none; color: #48dbfb; font-weight: 500; transition: color 0.3s;">Twitter (X)</a>
72
+ </div>
73
+ </div>
74
+ </div>
75
+ <div style="text-align: right; margin-left: 20px;">
76
+ <h1 style="margin: 0; background: linear-gradient(90deg, #48dbfb, #1dd1a1); -webkit-background-clip: text; -webkit-text-fill-color: transparent; font-size: 2.5em; font-weight: 700;">EgoGPT</h1>
77
+ <h2 style="margin: 10px 0; background: linear-gradient(90deg, #48dbfb, #1dd1a1); -webkit-background-clip: text; -webkit-text-fill-color: transparent; font-size: 1.8em; font-weight: 600;">An Egocentric Video-Audio-Text Model<br>from EgoLife Project</h2>
78
+ </div>
79
+ </div>
80
  """
81
+
82
+ bibtext = """
83
+ ### Citation
84
+ ```
85
+ @article{yang2025egolife,
86
+ title={EgoLife\: Towards Egocentric Life Assistant},
87
+ author={The EgoLife Team},
88
+ journal={arXiv preprint arXiv:25xxx},
89
+ year={2025}
90
+ }
91
+ ```
92
  """
 
93
 
94
+ cur_dir = os.path.dirname(os.path.abspath(__file__))
95
 
 
 
 
 
 
 
 
 
 
96
 
97
+ def time_to_frame_idx(time_int: int, fps: int) -> int:
98
+ """
99
+ Convert time in HHMMSSFF format (integer or string) to frame index.
100
+ :param time_int: Time in HHMMSSFF format, e.g., 10483000 (10:48:30.00) or "10483000".
101
+ :param fps: Frames per second of the video.
102
+ :return: Frame index corresponding to the given time.
103
+ """
104
+ # Ensure time_int is a string for slicing
105
+ time_str = str(time_int).zfill(
106
+ 8) # Pad with zeros if necessary to ensure it's 8 digits
107
 
108
+ hours = int(time_str[:2])
109
+ minutes = int(time_str[2:4])
110
+ seconds = int(time_str[4:6])
111
+ frames = int(time_str[6:8])
112
 
113
+ total_seconds = hours * 3600 + minutes * 60 + seconds
114
+ total_frames = total_seconds * fps + frames # Convert to total frames
115
 
116
+ return total_frames
 
 
 
 
 
 
 
117
 
118
+ def split_text(text, keywords):
119
+ # 创建一个正则表达式模式,将所有关键词用 | 连接,并使用捕获组
120
+ pattern = '(' + '|'.join(map(re.escape, keywords)) + ')'
121
+ # 使用 re.split 保留分隔符
122
+ parts = re.split(pattern, text)
123
+ # 去除空字符串
124
+ parts = [part for part in parts if part]
125
+ return parts
126
 
127
+ warnings.filterwarnings("ignore")
128
 
129
+ # Create FastAPI instance
130
+ app = FastAPI()
131
+ def load_video(
132
+ video_path: Optional[str] = None,
133
+ max_frames_num: int = 16,
134
+ fps: int = 1,
135
+ video_start_time: Optional[float] = None,
136
+ start_time: Optional[float] = None,
137
+ end_time: Optional[float] = None,
138
+ time_based_processing: bool = False
139
+ ) -> tuple:
140
+ vr = VideoReader(video_path, ctx=cpu(0), num_threads=1)
141
+ target_sr = 16000
142
+
143
+ # Add new time-based processing logic
144
+ if time_based_processing:
145
+ # Initialize video reader
146
+ vr = decord.VideoReader(video_path, ctx=decord.cpu(0), num_threads=1)
147
+ total_frame_num = len(vr)
148
+
149
+ # Get the actual FPS of the video
150
+ video_fps = vr.get_avg_fps()
151
+
152
+ # Convert time to frame index based on the actual video FPS
153
+ video_start_frame = int(time_to_frame_idx(video_start_time, video_fps))
154
+ start_frame = int(time_to_frame_idx(start_time, video_fps))
155
+ end_frame = int(time_to_frame_idx(end_time, video_fps))
156
+
157
+ print("start frame", start_frame)
158
+ print("end frame", end_frame)
159
+
160
+ # Ensure the end time does not exceed the total frame number
161
+ if end_frame - start_frame > total_frame_num:
162
+ end_frame = total_frame_num + start_frame
163
+
164
+ # Adjust start_frame and end_frame based on video start time
165
+ start_frame -= video_start_frame
166
+ end_frame -= video_start_frame
167
+ start_frame = max(0, int(round(start_frame))) # 确保不会小于0
168
+ end_frame = min(total_frame_num, int(round(end_frame))) # 确保不会超过总帧数
169
+ start_frame = int(round(start_frame))
170
+ end_frame = int(round(end_frame))
171
+
172
+ # Sample frames based on the provided fps (e.g., 1 frame per second)
173
+ frame_idx = [i for i in range(start_frame, end_frame) if (i - start_frame) % int(video_fps / fps) == 0]
174
+
175
+ # Get the video frames for the sampled indices
176
+ video = vr.get_batch(frame_idx).asnumpy()
177
+ target_sr = 16000 # Set target sample rate to 16kHz
178
+
179
+ # Load audio from video with resampling
180
+ y, _ = librosa.load(video_path, sr=target_sr)
181
+
182
+ # Convert time to audio samples (using 16kHz sample rate)
183
+ start_sample = int(start_time * target_sr)
184
+ end_sample = int(end_time * target_sr)
185
+
186
+ # Extract audio segment
187
+ speech = y[start_sample:end_sample]
188
+ else:
189
+ # Original processing logic
190
+ speech, _ = librosa.load(video_path, sr=target_sr)
191
+ total_frame_num = len(vr)
192
+ avg_fps = round(vr.get_avg_fps() / fps)
193
+ frame_idx = [i for i in range(0, total_frame_num, avg_fps)]
194
+
195
+ if max_frames_num > 0:
196
+ if len(frame_idx) > max_frames_num:
197
+ uniform_sampled_frames = np.linspace(0, total_frame_num - 1, max_frames_num, dtype=int)
198
+ frame_idx = uniform_sampled_frames.tolist()
199
+
200
+ video = vr.get_batch(frame_idx).asnumpy()
201
+
202
+ # Process audio
203
+ speech = whisper.pad_or_trim(speech.astype(np.float32))
204
+ speech = whisper.log_mel_spectrogram(speech, n_mels=128).permute(1, 0)
205
+ speech_lengths = torch.LongTensor([speech.shape[0]])
206
+
207
+ return video, speech, speech_lengths
208
+
209
+ class PromptRequest(BaseModel):
210
+ prompt: str
211
+ video_path: str = None
212
+ max_frames_num: int = 16
213
+ fps: int = 1
214
+ video_start_time: float = None
215
+ start_time: float = None
216
+ end_time: float = None
217
+ time_based_processing: bool = False
218
+
219
+ # @spaces.GPU(duration=120)
220
+ def generate_text(video_path, audio_track, prompt):
221
+ max_frames_num = 30
222
+ fps = 1
223
+ # model.eval()
224
+
225
+ # Video + speech branch
226
+ conv_template = "qwen_1_5" # Make sure you use correct chat template for different models
227
+ question = f"<image>\n{prompt}"
228
+ conv = copy.deepcopy(conv_templates[conv_template])
229
+ conv.append_message(conv.roles[0], question)
230
+ conv.append_message(conv.roles[1], None)
231
+ prompt_question = conv.get_prompt()
232
+
233
+ video, speech, speech_lengths = load_video(
234
+ video_path=video_path,
235
+ max_frames_num=max_frames_num,
236
+ fps=fps,
237
+ )
238
+ speech=torch.stack([speech]).to("cuda").half()
239
+ processor = model.get_vision_tower().image_processor
240
+ processed_video = processor.preprocess(video, return_tensors="pt")["pixel_values"]
241
+ image = [(processed_video, video[0].size, "video")]
242
+
243
+ print(prompt_question)
244
+ parts=split_text(prompt_question,["<image>","<speech>"])
245
+ input_ids=[]
246
+ for part in parts:
247
+ if "<image>"==part:
248
+ input_ids+=[IMAGE_TOKEN_INDEX]
249
+ elif "<speech>"==part:
250
+ input_ids+=[SPEECH_TOKEN_INDEX]
251
+ else:
252
+ input_ids+=tokenizer(part).input_ids
253
+
254
+ input_ids = torch.tensor(input_ids,dtype=torch.long).unsqueeze(0).to(device)
255
+ image_tensor = [image[0][0].half()]
256
+ image_sizes = [image[0][1]]
257
+
258
+ generate_kwargs={"eos_token_id":tokenizer.eos_token_id}
259
+ print(input_ids)
260
+ cont = model.generate(
261
+ input_ids,
262
+ images=image_tensor,
263
+ image_sizes=image_sizes,
264
+ speech=speech,
265
+ speech_lengths=speech_lengths,
266
+ do_sample=False,
267
+ temperature=0.5,
268
+ max_new_tokens=4096,
269
+ modalities=["video"],
270
+ **generate_kwargs
271
+ )
272
+
273
+ text_outputs = tokenizer.batch_decode(cont, skip_special_tokens=True)
274
+
275
+ return text_outputs[0]
276
+
277
+ def extract_audio_from_video(video_path, audio_path=None):
278
+ if audio_path:
279
+ try:
280
+ y, sr = librosa.load(audio_path, sr=8000, mono=True, res_type='kaiser_fast')
281
+ return (sr, y)
282
+ except Exception as e:
283
+ print(f"Error loading audio from {audio_path}: {e}")
284
+ return None
285
+ if video_path is None:
286
+ return None
287
+ try:
288
+ y, sr = librosa.load(video_path, sr=8000, mono=True, res_type='kaiser_fast')
289
+ return (sr, y)
290
+ except Exception as e:
291
+ print(f"Error extracting audio from video: {e}")
292
+ return None
293
+
294
+ head = """
295
+ <style>
296
+ /* Submit按钮默认和悬停效果 */
297
+ button.lg.secondary.svelte-5st68j {
298
+ background-color: #ff9933 !important;
299
+ transition: background-color 0.3s ease !important;
300
+ }
301
+
302
+ button.lg.secondary.svelte-5st68j:hover {
303
+ background-color: #ff7777 !important; /* 悬停时颜色加深 */
304
+ }
305
+
306
+ /* 确保按钮文字始终清晰可见 */
307
+ button.lg.secondary.svelte-5st68j span {
308
+ color: white !important;
309
+ }
310
+
311
+ /* 隐藏表头中的第二列 */
312
+ .table-wrap .svelte-p5q82i th:nth-child(2) {
313
+ display: none;
314
+ }
315
+
316
+ /* 隐藏表格内容中的第二列 */
317
+ .table-wrap .svelte-p5q82i td:nth-child(2) {
318
+ display: none;
319
+ }
320
+
321
+ .table-wrap {
322
+ max-height: 300px;
323
+ overflow-y: auto;
324
+ }
325
+
326
+ </style>
327
+
328
+ <script>
329
+ function initializeControls() {
330
+ const video = document.querySelector('[data-testid="Video-player"]');
331
+ const waveform = document.getElementById('waveform');
332
+
333
+ // 如果元素还没准备好,直接返回
334
+ if (!video || !waveform) {
335
+ return;
336
+ }
337
+
338
+ // 尝试获取音频元素
339
+ const audio = waveform.querySelector('div')?.shadowRoot?.querySelector('audio');
340
+ if (!audio) {
341
+ return;
342
+ }
343
+
344
+ console.log('Elements found:', { video, audio });
345
+
346
+ // 监听视频播放进度
347
+ video.addEventListener("play", () => {
348
+ if (audio.paused) {
349
+ audio.play(); // 如果音频暂停,开始播放
350
+ }
351
+ });
352
+
353
+ // 监听音频播放进度
354
+ audio.addEventListener("play", () => {
355
+ if (video.paused) {
356
+ video.play(); // 如果视频暂停,开始播放
357
+ }
358
+ });
359
+
360
+ // 同步视频和音频的播放进度
361
+ video.addEventListener("timeupdate", () => {
362
+ if (Math.abs(video.currentTime - audio.currentTime) > 0.1) {
363
+ audio.currentTime = video.currentTime; // 如果时间差超过0.1秒,同步
364
+ }
365
+ });
366
+
367
+ audio.addEventListener("timeupdate", () => {
368
+ if (Math.abs(audio.currentTime - video.currentTime) > 0.1) {
369
+ video.currentTime = audio.currentTime; // 如果时间差超过0.1秒,同步
370
+ }
371
+ });
372
+
373
+ // 监听暂停事件,确保视频和音频都暂停
374
+ video.addEventListener("pause", () => {
375
+ if (!audio.paused) {
376
+ audio.pause(); // 如果音频未暂停,暂停音频
377
+ }
378
+ });
379
+
380
+ audio.addEventListener("pause", () => {
381
+ if (!video.paused) {
382
+ video.pause(); // 如果视频未暂停,暂停视频
383
+ }
384
+ });
385
+ }
386
+
387
+ // 创建观察器监听DOM变化
388
+ const observer = new MutationObserver((mutations) => {
389
+ for (const mutation of mutations) {
390
+ if (mutation.addedNodes.length) {
391
+ // 当有新节点添加时,尝试初始化
392
+ const waveform = document.getElementById('waveform');
393
+ if (waveform?.querySelector('div')?.shadowRoot?.querySelector('audio')) {
394
+ console.log('Audio element detected');
395
+ initializeControls();
396
+ // 可选:如果不需要继续监听,可以断开观察器
397
+ // observer.disconnect();
398
+ }
399
+ }
400
+ }
401
+ });
402
+
403
+ // 开始观察
404
+ observer.observe(document.body, {
405
+ childList: true,
406
+ subtree: true
407
+ });
408
+
409
+ // 页面加载完成时也尝试初始化
410
+ document.addEventListener('DOMContentLoaded', () => {
411
+ console.log('DOM Content Loaded');
412
+ initializeControls();
413
+ });
414
+
415
+ </script>
416
  """
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
417
 
418
+ with gr.Blocks(head=head) as demo:
419
+ gr.Markdown(title_markdown)
420
+
421
+ with gr.Row():
422
+ with gr.Column():
423
+ video_input = gr.Video(label="Video", autoplay=True, loop=True, format="mp4", width=600, height=400, show_label=False, elem_id='video')
424
+ # Audio input synchronized with video playback
425
+ audio_display = gr.Audio(label="Video Audio Track", autoplay=False, show_label=True, visible=True, interactive=False, elem_id="audio")
426
+ text_input = gr.Textbox(label="Question", placeholder="Enter your message here...")
427
+
428
+ with gr.Column(): # Create a separate column for output and examples
429
+ output_text = gr.Textbox(label="Response", lines=14, max_lines=14)
430
+ gr.Examples(
431
+ examples=[
432
+ [f"{cur_dir}/videos/bike.mp4", f"{cur_dir}/videos/bike.mp3", "Can you tell me what I'm doing in short words. Describe them in a natural style."],
433
+ [f"{cur_dir}/videos/bike.mp4", f"{cur_dir}/videos/bike.mp3", "Can you tell me what I'm doing in short words. Describe them in a natural style."],
434
+ [f"{cur_dir}/videos/bike.mp4", f"{cur_dir}/videos/bike.mp3", "Can you tell me what I'm doing in short words. Describe them in a natural style."],
435
+ [f"{cur_dir}/videos/bike.mp4", f"{cur_dir}/videos/bike.mp3", "Can you tell me what I'm doing in short words. Describe them in a natural style."]
436
+ ],
437
+ inputs=[video_input, audio_display, text_input],
438
+ outputs=[output_text]
439
+ )
440
+
441
+ # Add event handler for video changes
442
+ video_input.change(
443
+ fn=lambda video_path: extract_audio_from_video(video_path, audio_path=None),
444
+ inputs=[video_input],
445
+ outputs=[audio_display]
446
+ )
447
+
448
+ # Add event handler for video clear/delete
449
+ def clear_outputs(video):
450
+ if video is None: # Video is cleared/deleted
451
+ return ""
452
+ return gr.skip() # Keep existing text if video exists
453
+
454
+ video_input.change(
455
+ fn=clear_outputs,
456
+ inputs=[video_input],
457
+ outputs=[output_text]
458
+ )
459
+
460
+ # Add submit button and its event handler
461
+ submit_btn = gr.Button("Submit")
462
+ submit_btn.click(
463
+ fn=generate_text,
464
+ inputs=[video_input, audio_display, text_input],
465
+ outputs=[output_text]
466
+ )
467
 
468
+ # Launch the Gradio app
469
+ demo.launch(share=True)