import streamlit as st import folium from streamlit_folium import folium_static import pandas as pd import os import plotly.figure_factory as ff import plotly.express as px from pathlib import Path from datetime import datetime, timedelta import numpy as np def map_page(): """ Render the map visualization page with delivery and depot locations. Can be called from app.py to display within the main application. """ st.title("Delivery Route Map") st.write(""" This page visualizes the delivery locations and vehicle depots on an interactive map. Use the filters in the sidebar to customize the view. """) # Add help section with expander with st.expander("📚 How to Use this Page"): st.markdown(""" ## Step-by-Step Guide to the Map Page The Map page provides an interactive visualization of all delivery locations and vehicle depots. It helps you understand delivery distribution, monitor delivery status, and plan logistics operations. ### 1. Map Navigation - **Pan**: Click and drag to move around the map - **Zoom**: Use the scroll wheel or the +/- buttons in the top-left corner - **View Details**: Click on any marker to see detailed information about that delivery or depot ### 2. Using Map Filters (Sidebar) - **Show/Hide Elements**: - Toggle "Show Deliveries" to display or hide delivery markers - Toggle "Show Depots" to display or hide vehicle depot markers - Enable "Show Data Table" to view raw delivery data below the map - Enable "Show Calendar View" to see delivery schedules organized by date - **Filter by Attributes**: - Use "Filter by Priority" to show only deliveries of selected priority levels (High, Medium, Low) - Use "Filter by Status" to show only deliveries with selected statuses (Pending, In Transit, Delivered) - **Date Filtering**: - Use the "Date Range" selector to focus on deliveries within specific dates - This affects both the map display and the calendar view ### 3. Understanding the Map Markers - **Delivery Markers**: - Red markers: High priority deliveries - Orange markers: Medium priority deliveries - Blue markers: Low priority deliveries - **Depot Markers**: - Green house icons: Vehicle depot locations ### 4. Using the Calendar View - Select specific dates from the dropdown to view scheduled deliveries - Each tab shows deliveries for one selected date - Timeline bars are color-coded by priority (red=High, orange=Medium, blue=Low) - Hover over timeline bars to see detailed delivery information - Check the summary metrics below each calendar for quick insights ### 5. Reading the Delivery Statistics - The top section shows key metrics about displayed deliveries: - Total number of deliveries shown - Total weight of all displayed deliveries - Number of pending deliveries - Breakdown of deliveries by status ### 6. Data Table Features When "Show Data Table" is enabled: - Green highlighted rows: Completed deliveries - Red highlighted rows: Urgent high-priority deliveries due within the next week - Sort any column by clicking the column header - Search across all fields using the search box This map view helps you visualize your delivery operations geographically while the calendar provides a time-based perspective of your delivery schedule. """) # Initialize session state variables for filters if 'map_filters' not in st.session_state: st.session_state.map_filters = { 'selected_dates': ["All"], 'priority_filter': [], 'status_filter': [], 'date_range': [None, None], 'show_calendar': True, 'show_map': True, 'show_data_table': False, 'cluster_markers': True } # Create filters in sidebar with st.sidebar: st.header("Map Filters") # Show/hide options - use session state values as defaults show_deliveries = st.checkbox( "Show Deliveries", value=st.session_state.map_filters.get('show_deliveries', True), key="show_deliveries_checkbox" ) st.session_state.map_filters['show_deliveries'] = show_deliveries show_depots = st.checkbox( "Show Depots", value=st.session_state.map_filters.get('show_depots', True), key="show_depots_checkbox" ) st.session_state.map_filters['show_depots'] = show_depots # Show/hide data table show_data_table = st.checkbox( "Show Data Table", value=st.session_state.map_filters.get('show_data_table', False), key="show_data_table_checkbox" ) st.session_state.map_filters['show_data_table'] = show_data_table # Choose visualization tabs show_calendar = st.checkbox( "Show Calendar View", value=st.session_state.map_filters.get('show_calendar', True), key="show_calendar_checkbox" ) st.session_state.map_filters['show_calendar'] = show_calendar # Try to load data try: # Get data paths root_dir = Path(__file__).resolve().parent.parent.parent # Go up to project root level delivery_path = os.path.join(root_dir, 'data', 'delivery-data', 'delivery_data.csv') # Fixed directory name with underscore vehicle_path = os.path.join(root_dir, 'data', 'vehicle-data', 'vehicle_data.csv') # Fixed directory name with underscore # Check if files exist if not os.path.exists(delivery_path): # Try with hyphen instead of underscore delivery_path = os.path.join(root_dir, 'data', 'delivery-data', 'delivery_data.csv') if not os.path.exists(delivery_path): st.warning(f"Delivery data file not found at: {delivery_path}") st.info("Please generate data first with: python src/utils/generate_all_data.py") return if not os.path.exists(vehicle_path): # Try with hyphen instead of underscore vehicle_path = os.path.join(root_dir, 'data', 'vehicle-data', 'vehicle_data.csv') if not os.path.exists(vehicle_path): st.warning(f"Vehicle data file not found at: {vehicle_path}") st.info("Please generate data first with: python src/utils/generate_all_data.py") return # Load data delivery_data = pd.read_csv(delivery_path) vehicle_data = pd.read_csv(vehicle_path) # Ensure delivery_date is properly formatted as datetime if 'delivery_date' in delivery_data.columns: delivery_data['delivery_date'] = pd.to_datetime(delivery_data['delivery_date']) # Add more filters if data is available - CONVERT TO MULTI-SELECT if 'priority' in delivery_data.columns: with st.sidebar: all_priorities = sorted(delivery_data['priority'].unique().tolist()) selected_priorities = st.multiselect( "Filter by Priority", options=all_priorities, default=st.session_state.map_filters.get('priority_filter', all_priorities), key="priority_multiselect" ) st.session_state.map_filters['priority_filter'] = selected_priorities if selected_priorities: delivery_data = delivery_data[delivery_data['priority'].isin(selected_priorities)] if 'status' in delivery_data.columns: with st.sidebar: all_statuses = sorted(delivery_data['status'].unique().tolist()) selected_statuses = st.multiselect( "Filter by Status", options=all_statuses, default=st.session_state.map_filters.get('status_filter', all_statuses), key="status_multiselect" ) st.session_state.map_filters['status_filter'] = selected_statuses if selected_statuses: delivery_data = delivery_data[delivery_data['status'].isin(selected_statuses)] if 'delivery_date' in delivery_data.columns: with st.sidebar: # Get the min/max dates from the ORIGINAL unfiltered data # Load original data to get proper date range original_data = pd.read_csv(delivery_path) if 'delivery_date' in original_data.columns: original_data['delivery_date'] = pd.to_datetime(original_data['delivery_date']) min_date = original_data['delivery_date'].min().date() max_date = original_data['delivery_date'].max().date() # Get saved values from session state saved_start_date = st.session_state.map_filters.get('date_range', [None, None])[0] saved_end_date = st.session_state.map_filters.get('date_range', [None, None])[1] # Validate saved dates - ensure they're within allowed range if saved_start_date and saved_start_date < min_date: saved_start_date = min_date if saved_end_date and saved_end_date > max_date: saved_end_date = max_date # Set default values with proper validation default_start_date = saved_start_date if saved_start_date else min_date default_end_date = saved_end_date if saved_end_date else min(min_date + timedelta(days=7), max_date) # Add date range picker try: date_range = st.date_input( "Date Range", value=(default_start_date, default_end_date), min_value=min_date, max_value=max_date, key="date_range_input" ) # Update session state with new date range if len(date_range) == 2: st.session_state.map_filters['date_range'] = list(date_range) start_date, end_date = date_range mask = (delivery_data['delivery_date'].dt.date >= start_date) & (delivery_data['delivery_date'].dt.date <= end_date) delivery_data = delivery_data[mask] except Exception as e: # If there's any error with the date range, reset it st.error(f"Error with date range: {e}") st.session_state.map_filters['date_range'] = [min_date, max_date] date_range = (min_date, max_date) mask = (delivery_data['delivery_date'].dt.date >= min_date) & (delivery_data['delivery_date'].dt.date <= max_date) delivery_data = delivery_data[mask] # MOVED STATISTICS TO THE TOP st.subheader("Delivery Overview") col1, col2, col3 = st.columns(3) with col1: st.metric("Deliveries Shown", len(delivery_data)) with col2: if 'weight_kg' in delivery_data.columns: total_weight = delivery_data['weight_kg'].sum() st.metric("Total Weight", f"{total_weight:.2f} kg") with col3: if 'status' in delivery_data.columns: pending = len(delivery_data[delivery_data['status'] == 'Pending']) st.metric("Pending Deliveries", pending) # Status count columns - dynamic based on available statuses if 'status' in delivery_data.columns: status_counts = delivery_data['status'].value_counts() # Create a varying number of columns based on unique statuses status_cols = st.columns(len(status_counts)) for i, (status, count) in enumerate(status_counts.items()): with status_cols[i]: # Choose color based on status delta_color = "normal" if status == "Delivered": delta_color = "off" elif status == "In Transit": delta_color = "normal" elif status == "Pending": delta_color = "inverse" # Red # Calculate percentage percentage = round((count / len(delivery_data)) * 100, 1) st.metric( f"{status}", count, f"{percentage}% of total", delta_color=delta_color ) # Create map singapore_coords = [1.3521, 103.8198] # Center of Singapore m = folium.Map(location=singapore_coords, zoom_start=12) # Add delivery markers if show_deliveries: for _, row in delivery_data.iterrows(): # Create popup content popup_content = f"ID: {row['delivery_id']}
" if 'customer_name' in row: popup_content += f"Customer: {row['customer_name']}
" if 'address' in row: popup_content += f"Address: {row['address']}
" if 'time_window' in row: popup_content += f"Time Window: {row['time_window']}
" if 'priority' in row: popup_content += f"Priority: {row['priority']}
" if 'delivery_date' in row: popup_content += f"Date: {row['delivery_date'].strftime('%b %d, %Y')}
" if 'status' in row: popup_content += f"Status: {row['status']}
" # Choose marker color based on priority color = 'blue' if 'priority' in row: if row['priority'] == 'High': color = 'red' elif row['priority'] == 'Medium': color = 'orange' # Add marker to map folium.Marker( [row['latitude'], row['longitude']], popup=folium.Popup(popup_content, max_width=300), tooltip=f"Delivery {row['delivery_id']}", icon=folium.Icon(color=color) ).add_to(m) # Add depot markers if show_depots: for _, row in vehicle_data.iterrows(): # Create popup content popup_content = f"Vehicle ID: {row['vehicle_id']}
" if 'vehicle_type' in row: popup_content += f"Type: {row['vehicle_type']}
" if 'driver_name' in row: popup_content += f"Driver: {row['driver_name']}
" # Add marker to map folium.Marker( [row['depot_latitude'], row['depot_longitude']], popup=folium.Popup(popup_content, max_width=300), tooltip=f"Depot: {row['vehicle_id']}", icon=folium.Icon(color='green', icon='home', prefix='fa') ).add_to(m) # Display the map folium_static(m, width=800, height=500) # Display calendar visualization if selected if show_calendar and 'delivery_date' in delivery_data.columns and 'time_window' in delivery_data.columns: st.subheader("Delivery Schedule Calendar") # Process data for calendar view calendar_data = delivery_data.copy() # Extract start and end times from time_window calendar_data[['start_time', 'end_time']] = calendar_data['time_window'].str.split('-', expand=True) # Create start and end datetime for each delivery calendar_data['Start'] = pd.to_datetime( calendar_data['delivery_date'].dt.strftime('%Y-%m-%d') + ' ' + calendar_data['start_time'] ) calendar_data['Finish'] = pd.to_datetime( calendar_data['delivery_date'].dt.strftime('%Y-%m-%d') + ' ' + calendar_data['end_time'] ) # Create task column for Gantt chart calendar_data['Task'] = calendar_data['delivery_id'] + ': ' + calendar_data['customer_name'] # Create color mapping for priority if 'priority' in calendar_data.columns: color_map = {'High': 'rgb(255, 0, 0)', 'Medium': 'rgb(255, 165, 0)', 'Low': 'rgb(0, 0, 255)'} calendar_data['Color'] = calendar_data['priority'].map(color_map) else: calendar_data['Color'] = 'rgb(0, 0, 255)' # Default blue # Get all available dates and add ƒmulti-select filter all_dates = sorted(calendar_data['delivery_date'].dt.date.unique()) # Format dates for display in the dropdown date_options = {date.strftime('%b %d, %Y'): date for date in all_dates} # Get default selection from session state default_selections = st.session_state.map_filters.get('calendar_selected_dates', []) # Validate default selections - only keep dates that exist in current options valid_default_selections = [date_str for date_str in default_selections if date_str in date_options.keys()] # If no valid selections remain, default to first date (if available) if not valid_default_selections and date_options: valid_default_selections = [list(date_options.keys())[0]] # Add multiselect for date filtering with validated defaults selected_date_strings = st.multiselect( "Select dates to display", options=list(date_options.keys()), default=valid_default_selections, key="calendar_date_selector" ) # Save selections to session state st.session_state.map_filters['calendar_selected_dates'] = selected_date_strings # Convert selected strings back to date objects selected_dates = [date_options[date_str] for date_str in selected_date_strings] if not selected_dates: st.info("Please select at least one date to view the delivery schedule.") else: # Filter calendar data to only include selected dates filtered_calendar = calendar_data[calendar_data['delivery_date'].dt.date.isin(selected_dates)] # Group tasks by date for better visualization date_groups = filtered_calendar.groupby(filtered_calendar['delivery_date'].dt.date) # Create tabs only for the selected dates date_tabs = st.tabs([date.strftime('%b %d, %Y') for date in selected_dates]) for i, (date, tab) in enumerate(zip(selected_dates, date_tabs)): with tab: # Filter data for this date day_data = filtered_calendar[filtered_calendar['delivery_date'].dt.date == date] if len(day_data) > 0: # Create figure fig = px.timeline( day_data, x_start="Start", x_end="Finish", y="Task", color="priority" if 'priority' in day_data.columns else None, color_discrete_map={"High": "red", "Medium": "orange", "Low": "blue"}, hover_data=["customer_name", "address", "weight_kg", "status"] ) # Update layout fig.update_layout( title=f"Deliveries scheduled for {date.strftime('%b %d, %Y')}", xaxis_title="Time of Day", yaxis_title="Delivery", height=max(300, 50 * len(day_data)), yaxis={'categoryorder':'category ascending'} ) # Display figure st.plotly_chart(fig, use_container_width=True) # Show summary col1, col2, col3 = st.columns(3) with col1: st.metric("Total Deliveries", len(day_data)) with col2: if 'weight_kg' in day_data.columns: st.metric("Total Weight", f"{day_data['weight_kg'].sum():.2f} kg") with col3: if 'priority' in day_data.columns and 'High' in day_data['priority'].values: st.metric("High Priority", len(day_data[day_data['priority'] == 'High'])) # NEW - Add delivery status breakdown for this day if 'status' in day_data.columns: st.write("##### Deliveries by Status") status_counts = day_data['status'].value_counts() status_cols = st.columns(min(4, len(status_counts))) for i, (status, count) in enumerate(status_counts.items()): col_idx = i % len(status_cols) with status_cols[col_idx]: st.metric(status, count) else: st.info(f"No deliveries scheduled for {date.strftime('%b %d, %Y')}") # Display raw data table if selected if show_data_table: st.subheader("Delivery Data") # Create a copy for display display_df = delivery_data.copy() # Convert delivery_date back to string for display if 'delivery_date' in display_df.columns: display_df['delivery_date'] = display_df['delivery_date'].dt.strftime('%b %d, %Y') # Compute which deliveries are urgent (next 7 days) if 'delivery_date' in delivery_data.columns: today = datetime.now().date() next_week = today + timedelta(days=7) # Function to highlight rows based on delivery status and urgency def highlight_rows(row): delivery_date = pd.to_datetime(row['delivery_date']).date() if 'delivery_date' in row else None # Check status first - highlight delivered rows in green if 'status' in row and row['status'] == 'Delivered': return ['background-color: rgba(0, 255, 0, 0.1)'] * len(row) # Then check for urgent high-priority deliveries - highlight in red elif delivery_date and delivery_date <= next_week and delivery_date >= today and row['priority'] == 'High': return ['background-color: rgba(255, 0, 0, 0.1)'] * len(row) else: return [''] * len(row) # Display styled dataframe st.dataframe(display_df.style.apply(highlight_rows, axis=1)) else: st.dataframe(display_df) except Exception as e: st.error(f"Error loading data: {str(e)}") st.info("Please generate the data first by running: python src/utils/generate_all_data.py") st.write("Error details:", e) # Detailed error for debugging # Make the function executable when file is run directly if __name__ == "__main__": # This is for debugging/testing the function independently st.set_page_config(page_title="Map View - Delivery Route Optimization", page_icon="🗺️", layout="wide") map_page()