File size: 25,553 Bytes
dc171c8 a6db9c3 4f2439e a6db9c3 dc171c8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 |
import streamlit as st
import folium
from streamlit_folium import folium_static
import pandas as pd
import os
import plotly.figure_factory as ff
import plotly.express as px
from pathlib import Path
from datetime import datetime, timedelta
import numpy as np
def map_page():
"""
Render the map visualization page with delivery and depot locations.
Can be called from app.py to display within the main application.
"""
st.title("Delivery Route Map")
st.write("""
This page visualizes the delivery locations and vehicle depots on an interactive map.
Use the filters in the sidebar to customize the view.
""")
# Add help section with expander
with st.expander("📚 How to Use this Page"):
st.markdown("""
## Step-by-Step Guide to the Map Page
The Map page provides an interactive visualization of all delivery locations and vehicle depots. It helps you understand delivery distribution, monitor delivery status, and plan logistics operations.
### 1. Map Navigation
- **Pan**: Click and drag to move around the map
- **Zoom**: Use the scroll wheel or the +/- buttons in the top-left corner
- **View Details**: Click on any marker to see detailed information about that delivery or depot
### 2. Using Map Filters (Sidebar)
- **Show/Hide Elements**:
- Toggle "Show Deliveries" to display or hide delivery markers
- Toggle "Show Depots" to display or hide vehicle depot markers
- Enable "Show Data Table" to view raw delivery data below the map
- Enable "Show Calendar View" to see delivery schedules organized by date
- **Filter by Attributes**:
- Use "Filter by Priority" to show only deliveries of selected priority levels (High, Medium, Low)
- Use "Filter by Status" to show only deliveries with selected statuses (Pending, In Transit, Delivered)
- **Date Filtering**:
- Use the "Date Range" selector to focus on deliveries within specific dates
- This affects both the map display and the calendar view
### 3. Understanding the Map Markers
- **Delivery Markers**:
- Red markers: High priority deliveries
- Orange markers: Medium priority deliveries
- Blue markers: Low priority deliveries
- **Depot Markers**:
- Green house icons: Vehicle depot locations
### 4. Using the Calendar View
- Select specific dates from the dropdown to view scheduled deliveries
- Each tab shows deliveries for one selected date
- Timeline bars are color-coded by priority (red=High, orange=Medium, blue=Low)
- Hover over timeline bars to see detailed delivery information
- Check the summary metrics below each calendar for quick insights
### 5. Reading the Delivery Statistics
- The top section shows key metrics about displayed deliveries:
- Total number of deliveries shown
- Total weight of all displayed deliveries
- Number of pending deliveries
- Breakdown of deliveries by status
### 6. Data Table Features
When "Show Data Table" is enabled:
- Green highlighted rows: Completed deliveries
- Red highlighted rows: Urgent high-priority deliveries due within the next week
- Sort any column by clicking the column header
- Search across all fields using the search box
This map view helps you visualize your delivery operations geographically while the calendar provides a time-based perspective of your delivery schedule.
""")
# Initialize session state variables for filters
if 'map_filters' not in st.session_state:
st.session_state.map_filters = {
'selected_dates': ["All"],
'priority_filter': [],
'status_filter': [],
'date_range': [None, None],
'show_calendar': True,
'show_map': True,
'show_data_table': False,
'cluster_markers': True
}
# Create filters in sidebar
with st.sidebar:
st.header("Map Filters")
# Show/hide options - use session state values as defaults
show_deliveries = st.checkbox(
"Show Deliveries",
value=st.session_state.map_filters.get('show_deliveries', True),
key="show_deliveries_checkbox"
)
st.session_state.map_filters['show_deliveries'] = show_deliveries
show_depots = st.checkbox(
"Show Depots",
value=st.session_state.map_filters.get('show_depots', True),
key="show_depots_checkbox"
)
st.session_state.map_filters['show_depots'] = show_depots
# Show/hide data table
show_data_table = st.checkbox(
"Show Data Table",
value=st.session_state.map_filters.get('show_data_table', False),
key="show_data_table_checkbox"
)
st.session_state.map_filters['show_data_table'] = show_data_table
# Choose visualization tabs
show_calendar = st.checkbox(
"Show Calendar View",
value=st.session_state.map_filters.get('show_calendar', True),
key="show_calendar_checkbox"
)
st.session_state.map_filters['show_calendar'] = show_calendar
# Try to load data
try:
# Get data paths
root_dir = Path(__file__).resolve().parent.parent.parent # Go up to project root level
delivery_path = os.path.join(root_dir, 'data', 'delivery-data', 'delivery_data.csv') # Fixed directory name with underscore
vehicle_path = os.path.join(root_dir, 'data', 'vehicle-data', 'vehicle_data.csv') # Fixed directory name with underscore
# Check if files exist
if not os.path.exists(delivery_path):
# Try with hyphen instead of underscore
delivery_path = os.path.join(root_dir, 'data', 'delivery-data', 'delivery_data.csv')
if not os.path.exists(delivery_path):
st.warning(f"Delivery data file not found at: {delivery_path}")
st.info("Please generate data first with: python src/utils/generate_all_data.py")
return
if not os.path.exists(vehicle_path):
# Try with hyphen instead of underscore
vehicle_path = os.path.join(root_dir, 'data', 'vehicle-data', 'vehicle_data.csv')
if not os.path.exists(vehicle_path):
st.warning(f"Vehicle data file not found at: {vehicle_path}")
st.info("Please generate data first with: python src/utils/generate_all_data.py")
return
# Load data
delivery_data = pd.read_csv(delivery_path)
vehicle_data = pd.read_csv(vehicle_path)
# Ensure delivery_date is properly formatted as datetime
if 'delivery_date' in delivery_data.columns:
delivery_data['delivery_date'] = pd.to_datetime(delivery_data['delivery_date'])
# Add more filters if data is available - CONVERT TO MULTI-SELECT
if 'priority' in delivery_data.columns:
with st.sidebar:
all_priorities = sorted(delivery_data['priority'].unique().tolist())
selected_priorities = st.multiselect(
"Filter by Priority",
options=all_priorities,
default=st.session_state.map_filters.get('priority_filter', all_priorities),
key="priority_multiselect"
)
st.session_state.map_filters['priority_filter'] = selected_priorities
if selected_priorities:
delivery_data = delivery_data[delivery_data['priority'].isin(selected_priorities)]
if 'status' in delivery_data.columns:
with st.sidebar:
all_statuses = sorted(delivery_data['status'].unique().tolist())
selected_statuses = st.multiselect(
"Filter by Status",
options=all_statuses,
default=st.session_state.map_filters.get('status_filter', all_statuses),
key="status_multiselect"
)
st.session_state.map_filters['status_filter'] = selected_statuses
if selected_statuses:
delivery_data = delivery_data[delivery_data['status'].isin(selected_statuses)]
if 'delivery_date' in delivery_data.columns:
with st.sidebar:
# Get the min/max dates from the ORIGINAL unfiltered data
# Load original data to get proper date range
original_data = pd.read_csv(delivery_path)
if 'delivery_date' in original_data.columns:
original_data['delivery_date'] = pd.to_datetime(original_data['delivery_date'])
min_date = original_data['delivery_date'].min().date()
max_date = original_data['delivery_date'].max().date()
# Get saved values from session state
saved_start_date = st.session_state.map_filters.get('date_range', [None, None])[0]
saved_end_date = st.session_state.map_filters.get('date_range', [None, None])[1]
# Validate saved dates - ensure they're within allowed range
if saved_start_date and saved_start_date < min_date:
saved_start_date = min_date
if saved_end_date and saved_end_date > max_date:
saved_end_date = max_date
# Set default values with proper validation
default_start_date = saved_start_date if saved_start_date else min_date
default_end_date = saved_end_date if saved_end_date else min(min_date + timedelta(days=7), max_date)
# Add date range picker
try:
date_range = st.date_input(
"Date Range",
value=(default_start_date, default_end_date),
min_value=min_date,
max_value=max_date,
key="date_range_input"
)
# Update session state with new date range
if len(date_range) == 2:
st.session_state.map_filters['date_range'] = list(date_range)
start_date, end_date = date_range
mask = (delivery_data['delivery_date'].dt.date >= start_date) & (delivery_data['delivery_date'].dt.date <= end_date)
delivery_data = delivery_data[mask]
except Exception as e:
# If there's any error with the date range, reset it
st.error(f"Error with date range: {e}")
st.session_state.map_filters['date_range'] = [min_date, max_date]
date_range = (min_date, max_date)
mask = (delivery_data['delivery_date'].dt.date >= min_date) & (delivery_data['delivery_date'].dt.date <= max_date)
delivery_data = delivery_data[mask]
# MOVED STATISTICS TO THE TOP
st.subheader("Delivery Overview")
col1, col2, col3 = st.columns(3)
with col1:
st.metric("Deliveries Shown", len(delivery_data))
with col2:
if 'weight_kg' in delivery_data.columns:
total_weight = delivery_data['weight_kg'].sum()
st.metric("Total Weight", f"{total_weight:.2f} kg")
with col3:
if 'status' in delivery_data.columns:
pending = len(delivery_data[delivery_data['status'] == 'Pending'])
st.metric("Pending Deliveries", pending)
# Status count columns - dynamic based on available statuses
if 'status' in delivery_data.columns:
status_counts = delivery_data['status'].value_counts()
# Create a varying number of columns based on unique statuses
status_cols = st.columns(len(status_counts))
for i, (status, count) in enumerate(status_counts.items()):
with status_cols[i]:
# Choose color based on status
delta_color = "normal"
if status == "Delivered":
delta_color = "off"
elif status == "In Transit":
delta_color = "normal"
elif status == "Pending":
delta_color = "inverse" # Red
# Calculate percentage
percentage = round((count / len(delivery_data)) * 100, 1)
st.metric(
f"{status}",
count,
f"{percentage}% of total",
delta_color=delta_color
)
# Create map
singapore_coords = [1.3521, 103.8198] # Center of Singapore
m = folium.Map(location=singapore_coords, zoom_start=12)
# Add delivery markers
if show_deliveries:
for _, row in delivery_data.iterrows():
# Create popup content
popup_content = f"<b>ID:</b> {row['delivery_id']}<br>"
if 'customer_name' in row:
popup_content += f"<b>Customer:</b> {row['customer_name']}<br>"
if 'address' in row:
popup_content += f"<b>Address:</b> {row['address']}<br>"
if 'time_window' in row:
popup_content += f"<b>Time Window:</b> {row['time_window']}<br>"
if 'priority' in row:
popup_content += f"<b>Priority:</b> {row['priority']}<br>"
if 'delivery_date' in row:
popup_content += f"<b>Date:</b> {row['delivery_date'].strftime('%b %d, %Y')}<br>"
if 'status' in row:
popup_content += f"<b>Status:</b> {row['status']}<br>"
# Choose marker color based on priority
color = 'blue'
if 'priority' in row:
if row['priority'] == 'High':
color = 'red'
elif row['priority'] == 'Medium':
color = 'orange'
# Add marker to map
folium.Marker(
[row['latitude'], row['longitude']],
popup=folium.Popup(popup_content, max_width=300),
tooltip=f"Delivery {row['delivery_id']}",
icon=folium.Icon(color=color)
).add_to(m)
# Add depot markers
if show_depots:
for _, row in vehicle_data.iterrows():
# Create popup content
popup_content = f"<b>Vehicle ID:</b> {row['vehicle_id']}<br>"
if 'vehicle_type' in row:
popup_content += f"<b>Type:</b> {row['vehicle_type']}<br>"
if 'driver_name' in row:
popup_content += f"<b>Driver:</b> {row['driver_name']}<br>"
# Add marker to map
folium.Marker(
[row['depot_latitude'], row['depot_longitude']],
popup=folium.Popup(popup_content, max_width=300),
tooltip=f"Depot: {row['vehicle_id']}",
icon=folium.Icon(color='green', icon='home', prefix='fa')
).add_to(m)
# Display the map
folium_static(m, width=800, height=500)
# Display calendar visualization if selected
if show_calendar and 'delivery_date' in delivery_data.columns and 'time_window' in delivery_data.columns:
st.subheader("Delivery Schedule Calendar")
# Process data for calendar view
calendar_data = delivery_data.copy()
# Extract start and end times from time_window
calendar_data[['start_time', 'end_time']] = calendar_data['time_window'].str.split('-', expand=True)
# Create start and end datetime for each delivery
calendar_data['Start'] = pd.to_datetime(
calendar_data['delivery_date'].dt.strftime('%Y-%m-%d') + ' ' + calendar_data['start_time']
)
calendar_data['Finish'] = pd.to_datetime(
calendar_data['delivery_date'].dt.strftime('%Y-%m-%d') + ' ' + calendar_data['end_time']
)
# Create task column for Gantt chart
calendar_data['Task'] = calendar_data['delivery_id'] + ': ' + calendar_data['customer_name']
# Create color mapping for priority
if 'priority' in calendar_data.columns:
color_map = {'High': 'rgb(255, 0, 0)', 'Medium': 'rgb(255, 165, 0)', 'Low': 'rgb(0, 0, 255)'}
calendar_data['Color'] = calendar_data['priority'].map(color_map)
else:
calendar_data['Color'] = 'rgb(0, 0, 255)' # Default blue
# Get all available dates and add ƒmulti-select filter
all_dates = sorted(calendar_data['delivery_date'].dt.date.unique())
# Format dates for display in the dropdown
date_options = {date.strftime('%b %d, %Y'): date for date in all_dates}
# Get default selection from session state
default_selections = st.session_state.map_filters.get('calendar_selected_dates', [])
# Validate default selections - only keep dates that exist in current options
valid_default_selections = [date_str for date_str in default_selections if date_str in date_options.keys()]
# If no valid selections remain, default to first date (if available)
if not valid_default_selections and date_options:
valid_default_selections = [list(date_options.keys())[0]]
# Add multiselect for date filtering with validated defaults
selected_date_strings = st.multiselect(
"Select dates to display",
options=list(date_options.keys()),
default=valid_default_selections,
key="calendar_date_selector"
)
# Save selections to session state
st.session_state.map_filters['calendar_selected_dates'] = selected_date_strings
# Convert selected strings back to date objects
selected_dates = [date_options[date_str] for date_str in selected_date_strings]
if not selected_dates:
st.info("Please select at least one date to view the delivery schedule.")
else:
# Filter calendar data to only include selected dates
filtered_calendar = calendar_data[calendar_data['delivery_date'].dt.date.isin(selected_dates)]
# Group tasks by date for better visualization
date_groups = filtered_calendar.groupby(filtered_calendar['delivery_date'].dt.date)
# Create tabs only for the selected dates
date_tabs = st.tabs([date.strftime('%b %d, %Y') for date in selected_dates])
for i, (date, tab) in enumerate(zip(selected_dates, date_tabs)):
with tab:
# Filter data for this date
day_data = filtered_calendar[filtered_calendar['delivery_date'].dt.date == date]
if len(day_data) > 0:
# Create figure
fig = px.timeline(
day_data,
x_start="Start",
x_end="Finish",
y="Task",
color="priority" if 'priority' in day_data.columns else None,
color_discrete_map={"High": "red", "Medium": "orange", "Low": "blue"},
hover_data=["customer_name", "address", "weight_kg", "status"]
)
# Update layout
fig.update_layout(
title=f"Deliveries scheduled for {date.strftime('%b %d, %Y')}",
xaxis_title="Time of Day",
yaxis_title="Delivery",
height=max(300, 50 * len(day_data)),
yaxis={'categoryorder':'category ascending'}
)
# Display figure
st.plotly_chart(fig, use_container_width=True)
# Show summary
col1, col2, col3 = st.columns(3)
with col1:
st.metric("Total Deliveries", len(day_data))
with col2:
if 'weight_kg' in day_data.columns:
st.metric("Total Weight", f"{day_data['weight_kg'].sum():.2f} kg")
with col3:
if 'priority' in day_data.columns and 'High' in day_data['priority'].values:
st.metric("High Priority", len(day_data[day_data['priority'] == 'High']))
# NEW - Add delivery status breakdown for this day
if 'status' in day_data.columns:
st.write("##### Deliveries by Status")
status_counts = day_data['status'].value_counts()
status_cols = st.columns(min(4, len(status_counts)))
for i, (status, count) in enumerate(status_counts.items()):
col_idx = i % len(status_cols)
with status_cols[col_idx]:
st.metric(status, count)
else:
st.info(f"No deliveries scheduled for {date.strftime('%b %d, %Y')}")
# Display raw data table if selected
if show_data_table:
st.subheader("Delivery Data")
# Create a copy for display
display_df = delivery_data.copy()
# Convert delivery_date back to string for display
if 'delivery_date' in display_df.columns:
display_df['delivery_date'] = display_df['delivery_date'].dt.strftime('%b %d, %Y')
# Compute which deliveries are urgent (next 7 days)
if 'delivery_date' in delivery_data.columns:
today = datetime.now().date()
next_week = today + timedelta(days=7)
# Function to highlight rows based on delivery status and urgency
def highlight_rows(row):
delivery_date = pd.to_datetime(row['delivery_date']).date() if 'delivery_date' in row else None
# Check status first - highlight delivered rows in green
if 'status' in row and row['status'] == 'Delivered':
return ['background-color: rgba(0, 255, 0, 0.1)'] * len(row)
# Then check for urgent high-priority deliveries - highlight in red
elif delivery_date and delivery_date <= next_week and delivery_date >= today and row['priority'] == 'High':
return ['background-color: rgba(255, 0, 0, 0.1)'] * len(row)
else:
return [''] * len(row)
# Display styled dataframe
st.dataframe(display_df.style.apply(highlight_rows, axis=1))
else:
st.dataframe(display_df)
except Exception as e:
st.error(f"Error loading data: {str(e)}")
st.info("Please generate the data first by running: python src/utils/generate_all_data.py")
st.write("Error details:", e) # Detailed error for debugging
# Make the function executable when file is run directly
if __name__ == "__main__":
# This is for debugging/testing the function independently
st.set_page_config(page_title="Map View - Delivery Route Optimization", page_icon="🗺️", layout="wide")
map_page() |