File size: 25,553 Bytes
dc171c8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a6db9c3
 
4f2439e
a6db9c3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dc171c8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
import streamlit as st
import folium
from streamlit_folium import folium_static
import pandas as pd
import os
import plotly.figure_factory as ff
import plotly.express as px
from pathlib import Path
from datetime import datetime, timedelta
import numpy as np

def map_page():
    """
    Render the map visualization page with delivery and depot locations.
    Can be called from app.py to display within the main application.
    """
    st.title("Delivery Route Map")
    st.write("""
    This page visualizes the delivery locations and vehicle depots on an interactive map.
    Use the filters in the sidebar to customize the view.
    """)


    # Add help section with expander
    with st.expander("📚 How to Use this Page"):
        st.markdown("""
        ## Step-by-Step Guide to the Map Page
        
        The Map page provides an interactive visualization of all delivery locations and vehicle depots. It helps you understand delivery distribution, monitor delivery status, and plan logistics operations.
        
        ### 1. Map Navigation
        
        - **Pan**: Click and drag to move around the map
        - **Zoom**: Use the scroll wheel or the +/- buttons in the top-left corner
        - **View Details**: Click on any marker to see detailed information about that delivery or depot
        
        ### 2. Using Map Filters (Sidebar)
        
        - **Show/Hide Elements**:
          - Toggle "Show Deliveries" to display or hide delivery markers
          - Toggle "Show Depots" to display or hide vehicle depot markers
          - Enable "Show Data Table" to view raw delivery data below the map
          - Enable "Show Calendar View" to see delivery schedules organized by date
        
        - **Filter by Attributes**:
          - Use "Filter by Priority" to show only deliveries of selected priority levels (High, Medium, Low)
          - Use "Filter by Status" to show only deliveries with selected statuses (Pending, In Transit, Delivered)
        
        - **Date Filtering**:
          - Use the "Date Range" selector to focus on deliveries within specific dates
          - This affects both the map display and the calendar view
        
        ### 3. Understanding the Map Markers
        
        - **Delivery Markers**:
          - Red markers: High priority deliveries
          - Orange markers: Medium priority deliveries
          - Blue markers: Low priority deliveries
        
        - **Depot Markers**:
          - Green house icons: Vehicle depot locations
        
        ### 4. Using the Calendar View
        
        - Select specific dates from the dropdown to view scheduled deliveries
        - Each tab shows deliveries for one selected date
        - Timeline bars are color-coded by priority (red=High, orange=Medium, blue=Low)
        - Hover over timeline bars to see detailed delivery information
        - Check the summary metrics below each calendar for quick insights
        
        ### 5. Reading the Delivery Statistics
        
        - The top section shows key metrics about displayed deliveries:
          - Total number of deliveries shown
          - Total weight of all displayed deliveries
          - Number of pending deliveries
          - Breakdown of deliveries by status
        
        ### 6. Data Table Features
        
        When "Show Data Table" is enabled:
        - Green highlighted rows: Completed deliveries
        - Red highlighted rows: Urgent high-priority deliveries due within the next week
        - Sort any column by clicking the column header
        - Search across all fields using the search box
        
        This map view helps you visualize your delivery operations geographically while the calendar provides a time-based perspective of your delivery schedule.
        """)
    
    # Initialize session state variables for filters
    if 'map_filters' not in st.session_state:
        st.session_state.map_filters = {
            'selected_dates': ["All"],
            'priority_filter': [],
            'status_filter': [],
            'date_range': [None, None],
            'show_calendar': True,
            'show_map': True,
            'show_data_table': False,
            'cluster_markers': True
        }
    
    # Create filters in sidebar
    with st.sidebar:
        st.header("Map Filters")
        
        # Show/hide options - use session state values as defaults
        show_deliveries = st.checkbox(
            "Show Deliveries", 
            value=st.session_state.map_filters.get('show_deliveries', True),
            key="show_deliveries_checkbox"
        )
        st.session_state.map_filters['show_deliveries'] = show_deliveries
        
        show_depots = st.checkbox(
            "Show Depots", 
            value=st.session_state.map_filters.get('show_depots', True),
            key="show_depots_checkbox"
        )
        st.session_state.map_filters['show_depots'] = show_depots
        
        # Show/hide data table
        show_data_table = st.checkbox(
            "Show Data Table", 
            value=st.session_state.map_filters.get('show_data_table', False),
            key="show_data_table_checkbox"
        )
        st.session_state.map_filters['show_data_table'] = show_data_table
        
        # Choose visualization tabs
        show_calendar = st.checkbox(
            "Show Calendar View", 
            value=st.session_state.map_filters.get('show_calendar', True),
            key="show_calendar_checkbox"
        )
        st.session_state.map_filters['show_calendar'] = show_calendar

    # Try to load data
    try:
        # Get data paths
        root_dir = Path(__file__).resolve().parent.parent.parent  # Go up to project root level
        delivery_path = os.path.join(root_dir, 'data', 'delivery-data', 'delivery_data.csv')  # Fixed directory name with underscore
        vehicle_path = os.path.join(root_dir, 'data', 'vehicle-data', 'vehicle_data.csv')    # Fixed directory name with underscore
        
        # Check if files exist
        if not os.path.exists(delivery_path):
            # Try with hyphen instead of underscore
            delivery_path = os.path.join(root_dir, 'data', 'delivery-data', 'delivery_data.csv')
            if not os.path.exists(delivery_path):
                st.warning(f"Delivery data file not found at: {delivery_path}")
                st.info("Please generate data first with: python src/utils/generate_all_data.py")
                return
            
        if not os.path.exists(vehicle_path):
            # Try with hyphen instead of underscore
            vehicle_path = os.path.join(root_dir, 'data', 'vehicle-data', 'vehicle_data.csv')
            if not os.path.exists(vehicle_path):
                st.warning(f"Vehicle data file not found at: {vehicle_path}")
                st.info("Please generate data first with: python src/utils/generate_all_data.py")
                return
            
        # Load data
        delivery_data = pd.read_csv(delivery_path)
        vehicle_data = pd.read_csv(vehicle_path)
        
        # Ensure delivery_date is properly formatted as datetime
        if 'delivery_date' in delivery_data.columns:
            delivery_data['delivery_date'] = pd.to_datetime(delivery_data['delivery_date'])
        
        # Add more filters if data is available - CONVERT TO MULTI-SELECT
        if 'priority' in delivery_data.columns:
            with st.sidebar:
                all_priorities = sorted(delivery_data['priority'].unique().tolist())
                selected_priorities = st.multiselect(
                    "Filter by Priority",
                    options=all_priorities,
                    default=st.session_state.map_filters.get('priority_filter', all_priorities),
                    key="priority_multiselect"
                )
                st.session_state.map_filters['priority_filter'] = selected_priorities
                
                if selected_priorities:
                    delivery_data = delivery_data[delivery_data['priority'].isin(selected_priorities)]
        
        if 'status' in delivery_data.columns:
            with st.sidebar:
                all_statuses = sorted(delivery_data['status'].unique().tolist())
                selected_statuses = st.multiselect(
                    "Filter by Status",
                    options=all_statuses,
                    default=st.session_state.map_filters.get('status_filter', all_statuses),
                    key="status_multiselect"
                )
                st.session_state.map_filters['status_filter'] = selected_statuses
                
                if selected_statuses:
                    delivery_data = delivery_data[delivery_data['status'].isin(selected_statuses)]
        
        if 'delivery_date' in delivery_data.columns:
            with st.sidebar:
                # Get the min/max dates from the ORIGINAL unfiltered data
                # Load original data to get proper date range
                original_data = pd.read_csv(delivery_path)
                if 'delivery_date' in original_data.columns:
                    original_data['delivery_date'] = pd.to_datetime(original_data['delivery_date'])
                    
                min_date = original_data['delivery_date'].min().date()
                max_date = original_data['delivery_date'].max().date()
                
                # Get saved values from session state
                saved_start_date = st.session_state.map_filters.get('date_range', [None, None])[0]
                saved_end_date = st.session_state.map_filters.get('date_range', [None, None])[1]
                
                # Validate saved dates - ensure they're within allowed range
                if saved_start_date and saved_start_date < min_date:
                    saved_start_date = min_date
                if saved_end_date and saved_end_date > max_date:
                    saved_end_date = max_date
                    
                # Set default values with proper validation
                default_start_date = saved_start_date if saved_start_date else min_date
                default_end_date = saved_end_date if saved_end_date else min(min_date + timedelta(days=7), max_date)
                
                # Add date range picker
                try:
                    date_range = st.date_input(
                        "Date Range",
                        value=(default_start_date, default_end_date),
                        min_value=min_date,
                        max_value=max_date,
                        key="date_range_input"
                    )
                    
                    # Update session state with new date range
                    if len(date_range) == 2:
                        st.session_state.map_filters['date_range'] = list(date_range)
                        start_date, end_date = date_range
                        mask = (delivery_data['delivery_date'].dt.date >= start_date) & (delivery_data['delivery_date'].dt.date <= end_date)
                        delivery_data = delivery_data[mask]
                except Exception as e:
                    # If there's any error with the date range, reset it
                    st.error(f"Error with date range: {e}")
                    st.session_state.map_filters['date_range'] = [min_date, max_date]
                    date_range = (min_date, max_date)
                    mask = (delivery_data['delivery_date'].dt.date >= min_date) & (delivery_data['delivery_date'].dt.date <= max_date)
                    delivery_data = delivery_data[mask]
                    
        # MOVED STATISTICS TO THE TOP
        st.subheader("Delivery Overview")
        col1, col2, col3 = st.columns(3)
        
        with col1:
            st.metric("Deliveries Shown", len(delivery_data))
            
        with col2:
            if 'weight_kg' in delivery_data.columns:
                total_weight = delivery_data['weight_kg'].sum()
                st.metric("Total Weight", f"{total_weight:.2f} kg")
                
        with col3:
            if 'status' in delivery_data.columns:
                pending = len(delivery_data[delivery_data['status'] == 'Pending'])
                st.metric("Pending Deliveries", pending)
        
        # Status count columns - dynamic based on available statuses
        if 'status' in delivery_data.columns:
            status_counts = delivery_data['status'].value_counts()
            # Create a varying number of columns based on unique statuses
            status_cols = st.columns(len(status_counts))
            
            for i, (status, count) in enumerate(status_counts.items()):
                with status_cols[i]:
                    # Choose color based on status
                    delta_color = "normal"
                    if status == "Delivered":
                        delta_color = "off" 
                    elif status == "In Transit":
                        delta_color = "normal"
                    elif status == "Pending":
                        delta_color = "inverse"  # Red
                    
                    # Calculate percentage
                    percentage = round((count / len(delivery_data)) * 100, 1)
                    st.metric(
                        f"{status}", 
                        count,
                        f"{percentage}% of total",
                        delta_color=delta_color
                    )
        
        # Create map
        singapore_coords = [1.3521, 103.8198]  # Center of Singapore
        m = folium.Map(location=singapore_coords, zoom_start=12)
        
        # Add delivery markers
        if show_deliveries:
            for _, row in delivery_data.iterrows():
                # Create popup content
                popup_content = f"<b>ID:</b> {row['delivery_id']}<br>"
                
                if 'customer_name' in row:
                    popup_content += f"<b>Customer:</b> {row['customer_name']}<br>"
                
                if 'address' in row:
                    popup_content += f"<b>Address:</b> {row['address']}<br>"
                    
                if 'time_window' in row:
                    popup_content += f"<b>Time Window:</b> {row['time_window']}<br>"
                    
                if 'priority' in row:
                    popup_content += f"<b>Priority:</b> {row['priority']}<br>"
                    
                if 'delivery_date' in row:
                    popup_content += f"<b>Date:</b> {row['delivery_date'].strftime('%b %d, %Y')}<br>"
                
                if 'status' in row:
                    popup_content += f"<b>Status:</b> {row['status']}<br>"
            
                # Choose marker color based on priority
                color = 'blue'
                if 'priority' in row:
                    if row['priority'] == 'High':
                        color = 'red'
                    elif row['priority'] == 'Medium':
                        color = 'orange'
            
                # Add marker to map
                folium.Marker(
                    [row['latitude'], row['longitude']],
                    popup=folium.Popup(popup_content, max_width=300),
                    tooltip=f"Delivery {row['delivery_id']}",
                    icon=folium.Icon(color=color)
                ).add_to(m)
        
        # Add depot markers
        if show_depots:
            for _, row in vehicle_data.iterrows():
                # Create popup content
                popup_content = f"<b>Vehicle ID:</b> {row['vehicle_id']}<br>"
                
                if 'vehicle_type' in row:
                    popup_content += f"<b>Type:</b> {row['vehicle_type']}<br>"
                    
                if 'driver_name' in row:
                    popup_content += f"<b>Driver:</b> {row['driver_name']}<br>"
            
                # Add marker to map
                folium.Marker(
                    [row['depot_latitude'], row['depot_longitude']],
                    popup=folium.Popup(popup_content, max_width=300),
                    tooltip=f"Depot: {row['vehicle_id']}",
                    icon=folium.Icon(color='green', icon='home', prefix='fa')
                ).add_to(m)
        
        # Display the map
        folium_static(m, width=800, height=500)
        
        # Display calendar visualization if selected
        if show_calendar and 'delivery_date' in delivery_data.columns and 'time_window' in delivery_data.columns:
            st.subheader("Delivery Schedule Calendar")
            
            # Process data for calendar view
            calendar_data = delivery_data.copy()
            
            # Extract start and end times from time_window
            calendar_data[['start_time', 'end_time']] = calendar_data['time_window'].str.split('-', expand=True)
            
            # Create start and end datetime for each delivery
            calendar_data['Start'] = pd.to_datetime(
                calendar_data['delivery_date'].dt.strftime('%Y-%m-%d') + ' ' + calendar_data['start_time']
            )
            calendar_data['Finish'] = pd.to_datetime(
                calendar_data['delivery_date'].dt.strftime('%Y-%m-%d') + ' ' + calendar_data['end_time']
            )
            
            # Create task column for Gantt chart
            calendar_data['Task'] = calendar_data['delivery_id'] + ': ' + calendar_data['customer_name']
            
            # Create color mapping for priority
            if 'priority' in calendar_data.columns:
                color_map = {'High': 'rgb(255, 0, 0)', 'Medium': 'rgb(255, 165, 0)', 'Low': 'rgb(0, 0, 255)'}
                calendar_data['Color'] = calendar_data['priority'].map(color_map)
            else:
                calendar_data['Color'] = 'rgb(0, 0, 255)'  # Default blue
            
            # Get all available dates and add ƒmulti-select filter
            all_dates = sorted(calendar_data['delivery_date'].dt.date.unique())

            # Format dates for display in the dropdown
            date_options = {date.strftime('%b %d, %Y'): date for date in all_dates}

            # Get default selection from session state
            default_selections = st.session_state.map_filters.get('calendar_selected_dates', [])

            # Validate default selections - only keep dates that exist in current options
            valid_default_selections = [date_str for date_str in default_selections if date_str in date_options.keys()]

            # If no valid selections remain, default to first date (if available)
            if not valid_default_selections and date_options:
                valid_default_selections = [list(date_options.keys())[0]]

            # Add multiselect for date filtering with validated defaults
            selected_date_strings = st.multiselect(
                "Select dates to display",
                options=list(date_options.keys()),
                default=valid_default_selections,
                key="calendar_date_selector"
            )

            # Save selections to session state
            st.session_state.map_filters['calendar_selected_dates'] = selected_date_strings

            # Convert selected strings back to date objects
            selected_dates = [date_options[date_str] for date_str in selected_date_strings]
            
            if not selected_dates:
                st.info("Please select at least one date to view the delivery schedule.")
            else:
                # Filter calendar data to only include selected dates
                filtered_calendar = calendar_data[calendar_data['delivery_date'].dt.date.isin(selected_dates)]
                
                # Group tasks by date for better visualization
                date_groups = filtered_calendar.groupby(filtered_calendar['delivery_date'].dt.date)
                
                # Create tabs only for the selected dates
                date_tabs = st.tabs([date.strftime('%b %d, %Y') for date in selected_dates])
                
                for i, (date, tab) in enumerate(zip(selected_dates, date_tabs)):
                    with tab:
                        # Filter data for this date
                        day_data = filtered_calendar[filtered_calendar['delivery_date'].dt.date == date]
                        
                        if len(day_data) > 0:
                            # Create figure
                            fig = px.timeline(
                                day_data, 
                                x_start="Start", 
                                x_end="Finish", 
                                y="Task",
                                color="priority" if 'priority' in day_data.columns else None,
                                color_discrete_map={"High": "red", "Medium": "orange", "Low": "blue"},
                                hover_data=["customer_name", "address", "weight_kg", "status"]
                            )
                            
                            # Update layout
                            fig.update_layout(
                                title=f"Deliveries scheduled for {date.strftime('%b %d, %Y')}",
                                xaxis_title="Time of Day",
                                yaxis_title="Delivery",
                                height=max(300, 50 * len(day_data)),
                                yaxis={'categoryorder':'category ascending'}
                            )
                            
                            # Display figure
                            st.plotly_chart(fig, use_container_width=True)
                            
                            # Show summary
                            col1, col2, col3 = st.columns(3)
                            with col1:
                                st.metric("Total Deliveries", len(day_data))
                            with col2:
                                if 'weight_kg' in day_data.columns:
                                    st.metric("Total Weight", f"{day_data['weight_kg'].sum():.2f} kg")
                            with col3:
                                if 'priority' in day_data.columns and 'High' in day_data['priority'].values:
                                    st.metric("High Priority", len(day_data[day_data['priority'] == 'High']))
                            
                            # NEW - Add delivery status breakdown for this day
                            if 'status' in day_data.columns:
                                st.write("##### Deliveries by Status")
                                status_counts = day_data['status'].value_counts()
                                status_cols = st.columns(min(4, len(status_counts)))
                                
                                for i, (status, count) in enumerate(status_counts.items()):
                                    col_idx = i % len(status_cols)
                                    with status_cols[col_idx]:
                                        st.metric(status, count)
                        else:
                            st.info(f"No deliveries scheduled for {date.strftime('%b %d, %Y')}")
        
        # Display raw data table if selected
        if show_data_table:
            st.subheader("Delivery Data")
            
            # Create a copy for display
            display_df = delivery_data.copy()
            
            # Convert delivery_date back to string for display
            if 'delivery_date' in display_df.columns:
                display_df['delivery_date'] = display_df['delivery_date'].dt.strftime('%b %d, %Y')
            
            # Compute which deliveries are urgent (next 7 days)
            if 'delivery_date' in delivery_data.columns:
                today = datetime.now().date()
                next_week = today + timedelta(days=7)
                
                # Function to highlight rows based on delivery status and urgency
                def highlight_rows(row):
                    delivery_date = pd.to_datetime(row['delivery_date']).date() if 'delivery_date' in row else None
                    
                    # Check status first - highlight delivered rows in green
                    if 'status' in row and row['status'] == 'Delivered':
                        return ['background-color: rgba(0, 255, 0, 0.1)'] * len(row)
                    # Then check for urgent high-priority deliveries - highlight in red
                    elif delivery_date and delivery_date <= next_week and delivery_date >= today and row['priority'] == 'High':
                        return ['background-color: rgba(255, 0, 0, 0.1)'] * len(row)
                    else:
                        return [''] * len(row)
                
                # Display styled dataframe
                st.dataframe(display_df.style.apply(highlight_rows, axis=1))
            else:
                st.dataframe(display_df)

    except Exception as e:
        st.error(f"Error loading data: {str(e)}")
        st.info("Please generate the data first by running: python src/utils/generate_all_data.py")
        st.write("Error details:", e)  # Detailed error for debugging

# Make the function executable when file is run directly
if __name__ == "__main__":
    # This is for debugging/testing the function independently
    st.set_page_config(page_title="Map View - Delivery Route Optimization", page_icon="🗺️", layout="wide")
    map_page()