P9_API-Segformer / fonctions_api.py
JimSmith007's picture
Tutilisation d'un fichier de fonction allégé pour l'API
5b48288
# fonctions_api.py (version allégée pour l'API FastAPI avec SegFormer)
import torch
import torch.nn.functional as F
import numpy as np
from pathlib import Path
from transformers import SegformerForSemanticSegmentation
# -------- Palette (optionnelle pour colorisation) --------
PALETTE = {
0: (0, 0, 0), # void
1: (50, 50, 150), # flat
2: (102, 0, 204), # construction
3: (255, 85, 0), # object
4: (255, 255, 0), # nature
5: (0, 255, 255), # sky
6: (255, 0, 255), # human
7: (255, 255, 255), # vehicle
}
# -------- Fonction principale pour charger SegFormer --------
def charger_segformer(num_classes=8):
model = SegformerForSemanticSegmentation.from_pretrained(
"nvidia/segformer-b5-finetuned-ade-640-640",
num_labels=num_classes,
ignore_mismatched_sizes=True
)
model.config.num_labels = num_classes
model.config.output_hidden_states = False
return model
# -------- Remapping Cityscapes labelIds vers 8 classes --------
def remap_classes(mask: np.ndarray) -> np.ndarray:
labelIds_to_main_classes = {
0: 0, 1: 0, 2: 0, 3: 0, 4: 0, 5: 0, 6: 0,
7: 1, 8: 1,
9: 0, 10: 0,
11: 2, 12: 2, 13: 2,
14: 0, 15: 0, 16: 0,
17: 3, 18: 3, 19: 3, 20: 3,
21: 4, 22: 4,
23: 5,
24: 6, 25: 6,
26: 7, 27: 7, 28: 7, 29: 7, 30: 7, 31: 7, 32: 7, 33: 7
}
remapped_mask = np.copy(mask)
for original_class, new_class in labelIds_to_main_classes.items():
remapped_mask[mask == original_class] = new_class
remapped_mask[mask > 33] = 0
return remapped_mask.astype(np.uint8)
# -------- Convertit un masque 2D en image RGB (optionnel) --------
def decode_cityscapes_mask(mask):
h, w = mask.shape
mask_rgb = np.zeros((h, w, 3), dtype=np.uint8)
for class_id, color in PALETTE.items():
mask_rgb[mask == class_id] = color
return mask_rgb