Spaces:
Running
Running
# fonctions_api.py (version allégée pour l'API FastAPI avec SegFormer) | |
import torch | |
import torch.nn.functional as F | |
import numpy as np | |
from pathlib import Path | |
from transformers import SegformerForSemanticSegmentation | |
# -------- Palette (optionnelle pour colorisation) -------- | |
PALETTE = { | |
0: (0, 0, 0), # void | |
1: (50, 50, 150), # flat | |
2: (102, 0, 204), # construction | |
3: (255, 85, 0), # object | |
4: (255, 255, 0), # nature | |
5: (0, 255, 255), # sky | |
6: (255, 0, 255), # human | |
7: (255, 255, 255), # vehicle | |
} | |
# -------- Fonction principale pour charger SegFormer -------- | |
def charger_segformer(num_classes=8): | |
model = SegformerForSemanticSegmentation.from_pretrained( | |
"nvidia/segformer-b5-finetuned-ade-640-640", | |
num_labels=num_classes, | |
ignore_mismatched_sizes=True | |
) | |
model.config.num_labels = num_classes | |
model.config.output_hidden_states = False | |
return model | |
# -------- Remapping Cityscapes labelIds vers 8 classes -------- | |
def remap_classes(mask: np.ndarray) -> np.ndarray: | |
labelIds_to_main_classes = { | |
0: 0, 1: 0, 2: 0, 3: 0, 4: 0, 5: 0, 6: 0, | |
7: 1, 8: 1, | |
9: 0, 10: 0, | |
11: 2, 12: 2, 13: 2, | |
14: 0, 15: 0, 16: 0, | |
17: 3, 18: 3, 19: 3, 20: 3, | |
21: 4, 22: 4, | |
23: 5, | |
24: 6, 25: 6, | |
26: 7, 27: 7, 28: 7, 29: 7, 30: 7, 31: 7, 32: 7, 33: 7 | |
} | |
remapped_mask = np.copy(mask) | |
for original_class, new_class in labelIds_to_main_classes.items(): | |
remapped_mask[mask == original_class] = new_class | |
remapped_mask[mask > 33] = 0 | |
return remapped_mask.astype(np.uint8) | |
# -------- Convertit un masque 2D en image RGB (optionnel) -------- | |
def decode_cityscapes_mask(mask): | |
h, w = mask.shape | |
mask_rgb = np.zeros((h, w, 3), dtype=np.uint8) | |
for class_id, color in PALETTE.items(): | |
mask_rgb[mask == class_id] = color | |
return mask_rgb |