jiaofengxu
Update app.py
2c67b9f
raw
history blame
694 Bytes
from transformers import pipeline
import gradio as gr
#model = pipeline("automatic-speech-recognition")
model = pipeline("automatic-speech-recognition", model="openai/whisper-base.en")
def transcribe_audio(mic=None, file=None):
if mic is not None:
audio = mic
elif file is not None:
audio = file
else:
return "You must either provide a mic recording or a file"
transcription = model(audio)["text"]
return transcription
gr.Interface(
fn=transcribe_audio,
inputs=[
gr.Audio(source="microphone", type="filepath", optional=True),
gr.Audio(source="upload", type="filepath", optional=True),
],
outputs="text",
).launch()