import os os.environ["HOME"] = "/root" os.environ["HF_HOME"] = "/tmp/hf_cache" import logging import threading import tempfile import uuid import torch import numpy as np import soundfile as sf import torchaudio import wave import time import re from fastapi import FastAPI, HTTPException, UploadFile, File, Form, BackgroundTasks from fastapi.responses import JSONResponse from fastapi.staticfiles import StaticFiles from typing import Dict, Any, Optional, Tuple, List from datetime import datetime, timedelta # Configure logging logging.basicConfig(level=logging.INFO) logger = logging.getLogger("talklas-api") app = FastAPI(title="Talklas API") # Mount a directory to serve audio files AUDIO_DIR = "/tmp/audio_output" # Use /tmp for temporary files os.makedirs(AUDIO_DIR, exist_ok=True) app.mount("/audio_output", StaticFiles(directory=AUDIO_DIR), name="audio_output") # Global variables to track application state models_loaded = False loading_in_progress = False loading_thread = None model_status = { "stt_whisper": "not_loaded", "stt_mms": "not_loaded", "mt": "not_loaded", "tts": "not_loaded" } error_message = None current_tts_language = "tgl" # Track the current TTS language # Model instances whisper_processor = None whisper_model = None mms_processor = None mms_model = None mt_model = None mt_tokenizer = None tts_model = None tts_tokenizer = None # Define the valid languages and mappings LANGUAGE_MAPPING = { "English": "eng", "Tagalog": "tgl", "Cebuano": "ceb", "Ilocano": "ilo", "Waray": "war", "Pangasinan": "pag" } # Define which languages use Whisper vs MMS for STT WHISPER_LANGUAGES = {"eng", "tgl"} # English and Tagalog use Whisper MMS_LANGUAGES = {"ceb", "ilo", "war", "pag"} # Other Philippine languages use MMS NLLB_LANGUAGE_CODES = { "eng": "eng_Latn", "tgl": "tgl_Latn", "ceb": "ceb_Latn", "ilo": "ilo_Latn", "war": "war_Latn", "pag": "pag_Latn" } # List of inappropriate words/phrases for content filtering INAPPROPRIATE_WORDS = [ # English inappropriate words "fuck", "shit", "bitch", "ass", "damn", "hell", "bastard", "cunt", "son of a bitch", "dick", "pussy", "motherfucker", # Philippine languages "agka baboy", "puta", "putang ina", "gago", "tanga", "hayop", "ulol", "lintik", "animal ka", "paki", "pakyu", "yawa", "bungol", "gingan", "yawa ka", "peste", "irig", "pakit", "ayat", "pua", "kayat mo ti agsardeng", "hinampak", "iring ka" ] # Function to check for inappropriate content def check_inappropriate_content(text: str) -> bool: """ Check if the text contains inappropriate content. Returns True if inappropriate content is detected, False otherwise. """ # Convert to lowercase for case-insensitive matching text_lower = text.lower() # Check for inappropriate words for word in INAPPROPRIATE_WORDS: # Use word boundary matching to avoid false positives pattern = r'\b' + re.escape(word) + r'\b' if re.search(pattern, text_lower): logger.warning(f"Inappropriate content detected: {word}") return True return False # Function to save PCM data as a WAV file def save_pcm_to_wav(pcm_data: list, sample_rate: int, output_path: str): # Convert pcm_data to a NumPy array of 16-bit integers pcm_array = np.array(pcm_data, dtype=np.int16) with wave.open(output_path, 'wb') as wav_file: # Set WAV parameters: 1 channel (mono), 2 bytes per sample (16-bit), sample rate wav_file.setnchannels(1) wav_file.setsampwidth(2) # 16-bit audio wav_file.setframerate(sample_rate) # Write the 16-bit PCM data as bytes (little-endian) wav_file.writeframes(pcm_array.tobytes()) # Function to detect speech using an energy-based approach def detect_speech(waveform: torch.Tensor, sample_rate: int, threshold: float = 0.01, min_speech_duration: float = 0.5) -> bool: """ Detects if the audio contains speech using an energy-based approach. Returns True if speech is detected, False otherwise. """ # Convert waveform to numpy array waveform_np = waveform.numpy() if waveform_np.ndim > 1: waveform_np = waveform_np.mean(axis=0) # Convert stereo to mono # Compute RMS energy rms = np.sqrt(np.mean(waveform_np**2)) logger.info(f"RMS energy: {rms}") # Check if RMS energy exceeds the threshold if rms < threshold: logger.info("No speech detected: RMS energy below threshold") return False # Optionally, check for minimum speech duration (requires more sophisticated VAD) # For now, we assume if RMS is above threshold, there is speech return True # Function to clean up old audio files def cleanup_old_audio_files(): logger.info("Starting cleanup of old audio files...") expiration_time = datetime.now() - timedelta(minutes=10) # Files older than 10 minutes for filename in os.listdir(AUDIO_DIR): file_path = os.path.join(AUDIO_DIR, filename) if os.path.isfile(file_path): file_mtime = datetime.fromtimestamp(os.path.getmtime(file_path)) if file_mtime < expiration_time: try: os.unlink(file_path) logger.info(f"Deleted old audio file: {file_path}") except Exception as e: logger.error(f"Error deleting file {file_path}: {str(e)}") # Background task to periodically clean up audio files def schedule_cleanup(): while True: cleanup_old_audio_files() time.sleep(300) # Run every 5 minutes (300 seconds) # Function to load models in background def load_models_task(): global models_loaded, loading_in_progress, model_status, error_message global whisper_processor, whisper_model, mms_processor, mms_model global mt_model, mt_tokenizer, tts_model, tts_tokenizer try: loading_in_progress = True device = "cuda" if torch.cuda.is_available() else "cpu" # Load Whisper STT model for English and Tagalog logger.info("Starting to load Whisper STT model...") from transformers import WhisperProcessor, WhisperForConditionalGeneration try: logger.info("Loading Whisper STT model...") model_status["stt_whisper"] = "loading" whisper_processor = WhisperProcessor.from_pretrained("openai/whisper-small") whisper_model = WhisperForConditionalGeneration.from_pretrained("openai/whisper-small") whisper_model.to(device) logger.info("Whisper STT model loaded successfully") model_status["stt_whisper"] = "loaded" except Exception as whisper_error: logger.error(f"Failed to load Whisper STT model: {str(whisper_error)}") model_status["stt_whisper"] = "failed" error_message = f"Whisper STT model loading failed: {str(whisper_error)}" return # Load MMS STT model for other Philippine languages logger.info("Starting to load MMS STT model...") from transformers import AutoProcessor, AutoModelForCTC try: logger.info("Loading MMS STT model...") model_status["stt_mms"] = "loading" mms_processor = AutoProcessor.from_pretrained("facebook/mms-1b-all") mms_model = AutoModelForCTC.from_pretrained("facebook/mms-1b-all") mms_model.to(device) logger.info("MMS STT model loaded successfully") model_status["stt_mms"] = "loaded" except Exception as mms_error: logger.error(f"Failed to load MMS STT model: {str(mms_error)}") model_status["stt_mms"] = "failed" error_message = f"MMS STT model loading failed: {str(mms_error)}" return # Load MT model logger.info("Starting to load MT model...") from transformers import AutoModelForSeq2SeqLM, AutoTokenizer try: logger.info("Loading NLLB-200-distilled-600M model...") model_status["mt"] = "loading" mt_model = AutoModelForSeq2SeqLM.from_pretrained("facebook/nllb-200-distilled-600M") mt_tokenizer = AutoTokenizer.from_pretrained("facebook/nllb-200-distilled-600M") mt_model.to(device) logger.info("MT model loaded successfully") model_status["mt"] = "loaded" except Exception as e: logger.error(f"Failed to load MT model: {str(e)}") model_status["mt"] = "failed" error_message = f"MT model loading failed: {str(e)}" return # Load TTS model (default to Tagalog, will be updated dynamically) logger.info("Starting to load TTS model...") from transformers import VitsModel, AutoTokenizer try: logger.info("Loading MMS-TTS model for Tagalog...") model_status["tts"] = "loading" tts_model = VitsModel.from_pretrained("facebook/mms-tts-tgl") tts_tokenizer = AutoTokenizer.from_pretrained("facebook/mms-tts-tgl") tts_model.to(device) logger.info("TTS model loaded successfully") model_status["tts"] = "loaded" except Exception as e: logger.error(f"Failed to load TTS model for Tagalog: {str(e)}") # Fallback to English TTS if the target language fails try: logger.info("Falling back to MMS-TTS English model...") tts_model = VitsModel.from_pretrained("facebook/mms-tts-eng") tts_tokenizer = AutoTokenizer.from_pretrained("facebook/mms-tts-eng") tts_model.to(device) logger.info("Fallback TTS model loaded successfully") model_status["tts"] = "loaded (fallback)" current_tts_language = "eng" except Exception as e2: logger.error(f"Failed to load fallback TTS model: {str(e2)}") model_status["tts"] = "failed" error_message = f"TTS model loading failed: {str(e)} (fallback also failed: {str(e2)})" return models_loaded = True logger.info("Model loading completed successfully") except Exception as e: error_message = str(e) logger.error(f"Error in model loading task: {str(e)}") finally: loading_in_progress = False # Start loading models in background def start_model_loading(): global loading_thread, loading_in_progress if not loading_in_progress and not models_loaded: loading_in_progress = True loading_thread = threading.Thread(target=load_models_task) loading_thread.daemon = True loading_thread.start() # Start the background cleanup task def start_cleanup_task(): cleanup_thread = threading.Thread(target=schedule_cleanup) cleanup_thread.daemon = True cleanup_thread.start() # Function to load or update TTS model for a specific language def load_tts_model_for_language(target_code: str) -> bool: """ Load or update the TTS model for the specified language. Returns True if successful, False otherwise. """ global tts_model, tts_tokenizer, current_tts_language, model_status if target_code not in LANGUAGE_MAPPING.values(): logger.error(f"Invalid language code: {target_code}") return False # Skip if the model is already loaded for the target language if current_tts_language == target_code and model_status["tts"].startswith("loaded"): logger.info(f"TTS model for {target_code} is already loaded.") return True device = "cuda" if torch.cuda.is_available() else "cpu" try: logger.info(f"Loading MMS-TTS model for {target_code}...") from transformers import VitsModel, AutoTokenizer tts_model = VitsModel.from_pretrained(f"facebook/mms-tts-{target_code}") tts_tokenizer = AutoTokenizer.from_pretrained(f"facebook/mms-tts-{target_code}") tts_model.to(device) current_tts_language = target_code logger.info(f"TTS model updated to {target_code}") model_status["tts"] = "loaded" return True except Exception as e: logger.error(f"Failed to load TTS model for {target_code}: {str(e)}") try: logger.info("Falling back to MMS-TTS English model...") tts_model = VitsModel.from_pretrained("facebook/mms-tts-eng") tts_tokenizer = AutoTokenizer.from_pretrained("facebook/mms-tts-eng") tts_model.to(device) current_tts_language = "eng" logger.info("Fallback TTS model loaded successfully") model_status["tts"] = "loaded (fallback)" return True except Exception as e2: logger.error(f"Failed to load fallback TTS model: {str(e2)}") model_status["tts"] = "failed" return False # Function to synthesize speech from text def synthesize_speech(text: str, target_code: str) -> Tuple[Optional[str], Optional[str]]: """ Convert text to speech for the specified language. Returns a tuple of (output_path, error_message). """ global tts_model, tts_tokenizer request_id = str(uuid.uuid4()) output_path = os.path.join(AUDIO_DIR, f"{request_id}.wav") # Make sure the TTS model is loaded for the target language if not load_tts_model_for_language(target_code): return None, "Failed to load TTS model for the target language" device = "cuda" if torch.cuda.is_available() else "cpu" try: inputs = tts_tokenizer(text, return_tensors="pt").to(device) with torch.no_grad(): output = tts_model(**inputs) speech = output.waveform.cpu().numpy().squeeze() speech = (speech * 32767).astype(np.int16) sample_rate = tts_model.config.sampling_rate # Save the audio as a WAV file save_pcm_to_wav(speech.tolist(), sample_rate, output_path) logger.info(f"Saved synthesized audio to {output_path}") return output_path, None except Exception as e: error_msg = f"Error during TTS conversion: {str(e)}" logger.error(error_msg) return None, error_msg # Start the background processes when the app starts @app.on_event("startup") async def startup_event(): logger.info("Application starting up...") start_model_loading() start_cleanup_task() @app.get("/") async def root(): """Root endpoint for default health check""" logger.info("Root endpoint requested") return {"status": "healthy"} @app.get("/health") async def health_check(): """Health check endpoint that always returns successfully""" global models_loaded, loading_in_progress, model_status, error_message logger.info("Health check requested") return { "status": "healthy", "models_loaded": models_loaded, "loading_in_progress": loading_in_progress, "model_status": model_status, "error": error_message } @app.post("/translate-text") async def translate_text(text: str = Form(...), source_lang: str = Form(...), target_lang: str = Form(...)): """Endpoint to translate text and convert to speech""" global mt_model, mt_tokenizer, tts_model, tts_tokenizer, current_tts_language if not text: raise HTTPException(status_code=400, detail="No text provided") if source_lang not in LANGUAGE_MAPPING or target_lang not in LANGUAGE_MAPPING: raise HTTPException(status_code=400, detail="Invalid language selected") logger.info(f"Translate-text requested: {text} from {source_lang} to {target_lang}") request_id = str(uuid.uuid4()) # Translate the text source_code = LANGUAGE_MAPPING[source_lang] target_code = LANGUAGE_MAPPING[target_lang] translated_text = "Translation not available" if model_status["mt"] == "loaded" and mt_model is not None and mt_tokenizer is not None: try: source_nllb_code = NLLB_LANGUAGE_CODES[source_code] target_nllb_code = NLLB_LANGUAGE_CODES[target_code] mt_tokenizer.src_lang = source_nllb_code device = "cuda" if torch.cuda.is_available() else "cpu" inputs = mt_tokenizer(text, return_tensors="pt").to(device) with torch.no_grad(): generated_tokens = mt_model.generate( **inputs, forced_bos_token_id=mt_tokenizer.convert_tokens_to_ids(target_nllb_code), max_length=448 ) translated_text = mt_tokenizer.batch_decode(generated_tokens, skip_special_tokens=True)[0] logger.info(f"Translation completed: {translated_text}") except Exception as e: logger.error(f"Error during translation: {str(e)}") translated_text = f"Translation failed: {str(e)}" else: logger.warning("MT model not loaded, skipping translation") # Check for inappropriate content in the source text and translated text is_inappropriate = check_inappropriate_content(text) or check_inappropriate_content(translated_text) if is_inappropriate: logger.warning("Inappropriate content detected in translation request") # Convert translated text to speech output_audio_url = None if model_status["tts"].startswith("loaded"): # Load or update TTS model for the target language if load_tts_model_for_language(target_code): try: output_path, error = synthesize_speech(translated_text, target_code) if output_path: output_filename = os.path.basename(output_path) output_audio_url = f"https://jerich-talklasapp.hf.space/audio_output/{output_filename}" logger.info("TTS conversion completed") except Exception as e: logger.error(f"Error during TTS conversion: {str(e)}") return { "request_id": request_id, "status": "completed", "message": "Translation and TTS completed (or partially completed).", "source_text": text, "translated_text": translated_text, "output_audio": output_audio_url, "is_inappropriate": is_inappropriate } @app.post("/translate-audio") async def translate_audio(audio: UploadFile = File(...), source_lang: str = Form(...), target_lang: str = Form(...)): """Endpoint to transcribe, translate, and convert audio to speech""" global whisper_processor, whisper_model, mms_processor, mms_model global mt_model, mt_tokenizer, tts_model, tts_tokenizer, current_tts_language if not audio: raise HTTPException(status_code=400, detail="No audio file provided") if source_lang not in LANGUAGE_MAPPING or target_lang not in LANGUAGE_MAPPING: raise HTTPException(status_code=400, detail="Invalid language selected") source_code = LANGUAGE_MAPPING[source_lang] target_code = LANGUAGE_MAPPING[target_lang] logger.info(f"Translate-audio requested: {audio.filename} from {source_lang} ({source_code}) to {target_lang} ({target_code})") request_id = str(uuid.uuid4()) # Determine which STT model to use based on source language use_whisper = source_code in WHISPER_LANGUAGES use_mms = source_code in MMS_LANGUAGES # Check if the appropriate STT model is loaded if use_whisper and (model_status["stt_whisper"] != "loaded" or whisper_processor is None or whisper_model is None): logger.warning("Whisper STT model not loaded for English/Tagalog, returning placeholder response") return { "request_id": request_id, "status": "processing", "message": "Whisper STT model not loaded yet. Please try again later.", "source_text": "Transcription not available", "translated_text": "Translation not available", "output_audio": None, "is_inappropriate": False } if use_mms and (model_status["stt_mms"] != "loaded" or mms_processor is None or mms_model is None): logger.warning("MMS STT model not loaded for Philippine languages, returning placeholder response") return { "request_id": request_id, "status": "processing", "message": "MMS STT model not loaded yet. Please try again later.", "source_text": "Transcription not available", "translated_text": "Translation not available", "output_audio": None, "is_inappropriate": False } # Save the uploaded audio to a temporary file with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as temp_file: temp_file.write(await audio.read()) temp_path = temp_file.name transcription = "Transcription not available" translated_text = "Translation not available" output_audio_url = None is_inappropriate = False try: # Step 1: Load and resample the audio using torchaudio logger.info(f"Reading audio file: {temp_path}") waveform, sample_rate = torchaudio.load(temp_path) logger.info(f"Audio loaded: sample_rate={sample_rate}, waveform_shape={waveform.shape}") # Resample to 16 kHz if needed (required by Whisper and MMS models) if sample_rate != 16000: logger.info(f"Resampling audio from {sample_rate} Hz to 16000 Hz") resampler = torchaudio.transforms.Resample(sample_rate, 16000) waveform = resampler(waveform) sample_rate = 16000 # Step 2: Detect speech if not detect_speech(waveform, sample_rate): return { "request_id": request_id, "status": "failed", "message": "No speech detected in the audio.", "source_text": "No speech detected", "translated_text": "No translation available", "output_audio": None, "is_inappropriate": False } # Step 3: Transcribe the audio (STT) device = "cuda" if torch.cuda.is_available() else "cpu" logger.info(f"Using device: {device} for STT") if use_whisper: # Use Whisper model for English and Tagalog logger.info(f"Using Whisper model for language: {source_code}") # Prepare audio for Whisper inputs = whisper_processor(waveform.numpy(), sampling_rate=16000, return_tensors="pt").to(device) logger.info("Audio processed for Whisper, generating transcription...") with torch.no_grad(): # For English, we can specify the language; for Tagalog we use 'tl' forced_language = "en" if source_code == "eng" else "tl" generated_ids = whisper_model.generate( **inputs, language=forced_language, task="transcribe" ) transcription = whisper_processor.batch_decode(generated_ids, skip_special_tokens=True)[0] else: # Use MMS model for other Philippine languages logger.info(f"Using MMS model for language: {source_code}") # Prepare audio for MMS inputs = mms_processor(waveform.numpy(), sampling_rate=16000, return_tensors="pt").to(device) logger.info("Audio processed for MMS, generating transcription...") with torch.no_grad(): # Process with MMS logits = mms_model(**inputs).logits predicted_ids = torch.argmax(logits, dim=-1) transcription = mms_processor.batch_decode(predicted_ids)[0] logger.info(f"Transcription completed: {transcription}") # Step 4: Translate the transcribed text (MT) if model_status["mt"] == "loaded" and mt_model is not None and mt_tokenizer is not None: try: source_nllb_code = NLLB_LANGUAGE_CODES[source_code] target_nllb_code = NLLB_LANGUAGE_CODES[target_code] mt_tokenizer.src_lang = source_nllb_code inputs = mt_tokenizer(transcription, return_tensors="pt").to(device) with torch.no_grad(): generated_tokens = mt_model.generate( **inputs, forced_bos_token_id=mt_tokenizer.convert_tokens_to_ids(target_nllb_code), max_length=448 ) translated_text = mt_tokenizer.batch_decode(generated_tokens, skip_special_tokens=True)[0] logger.info(f"Translation completed: {translated_text}") except Exception as e: logger.error(f"Error during translation: {str(e)}") translated_text = f"Translation failed: {str(e)}" else: logger.warning("MT model not loaded, skipping translation") # Step 5: Check for inappropriate content is_inappropriate = check_inappropriate_content(transcription) or check_inappropriate_content(translated_text) if is_inappropriate: logger.warning("Inappropriate content detected in audio transcription or translation") # Step 6: Convert translated text to speech (TTS) if load_tts_model_for_language(target_code): try: output_path, error = synthesize_speech(translated_text, target_code) if output_path: output_filename = os.path.basename(output_path) output_audio_url = f"https://jerich-talklasapp.hf.space/audio_output/{output_filename}" logger.info("TTS conversion completed") except Exception as e: logger.error(f"Error during TTS conversion: {str(e)}") return { "request_id": request_id, "status": "completed", "message": "Transcription, translation, and TTS completed (or partially completed).", "source_text": transcription, "translated_text": translated_text, "output_audio": output_audio_url, "is_inappropriate": is_inappropriate } except Exception as e: logger.error(f"Error during processing: {str(e)}") return { "request_id": request_id, "status": "failed", "message": f"Processing failed: {str(e)}", "source_text": transcription, "translated_text": translated_text, "output_audio": output_audio_url, "is_inappropriate": is_inappropriate } finally: logger.info(f"Cleaning up temporary file: {temp_path}") os.unlink(temp_path) @app.post("/text-to-speech") async def text_to_speech(text: str = Form(...), target_lang: str = Form(...)): """Endpoint to convert text to speech in the specified language""" if not text: raise HTTPException(status_code=400, detail="No text provided") if target_lang not in LANGUAGE_MAPPING: raise HTTPException(status_code=400, detail="Invalid language selected") logger.info(f"Text-to-speech requested for text in {target_lang}") request_id = str(uuid.uuid4()) target_code = LANGUAGE_MAPPING[target_lang] # Check for inappropriate content is_inappropriate = check_inappropriate_content(text) if is_inappropriate: logger.warning("Inappropriate content detected in text-to-speech request") # Synthesize speech output_audio_url = None if model_status["tts"].startswith("loaded") or load_tts_model_for_language(target_code): try: output_path, error = synthesize_speech(text, target_code) if output_path: output_filename = os.path.basename(output_path) output_audio_url = f"https://jerich-talklasapp.hf.space/audio_output/{output_filename}" logger.info("TTS conversion completed") else: logger.error(f"TTS conversion failed: {error}") except Exception as e: logger.error(f"Error during TTS conversion: {str(e)}") else: logger.warning("TTS model not loaded and could not be loaded") return { "request_id": request_id, "status": "completed" if output_audio_url else "failed", "message": "TTS completed" if output_audio_url else "TTS failed", "text": text, "output_audio": output_audio_url, "is_inappropriate": is_inappropriate } if __name__ == "__main__": import uvicorn logger.info("Starting Uvicorn server...") uvicorn.run(app, host="0.0.0.0", port=8000, workers=1)