Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -35,16 +35,20 @@ models_loaded = False
|
|
35 |
loading_in_progress = False
|
36 |
loading_thread = None
|
37 |
model_status = {
|
38 |
-
"
|
|
|
39 |
"mt": "not_loaded",
|
40 |
"tts": "not_loaded"
|
41 |
}
|
42 |
error_message = None
|
43 |
current_tts_language = "tgl" # Track the current TTS language
|
|
|
44 |
|
45 |
# Model instances
|
46 |
-
|
47 |
-
|
|
|
|
|
48 |
mt_model = None
|
49 |
mt_tokenizer = None
|
50 |
tts_model = None
|
@@ -152,38 +156,44 @@ def schedule_cleanup():
|
|
152 |
# Function to load models in background
|
153 |
def load_models_task():
|
154 |
global models_loaded, loading_in_progress, model_status, error_message
|
155 |
-
global
|
|
|
156 |
|
157 |
try:
|
158 |
loading_in_progress = True
|
|
|
159 |
|
160 |
-
# Load STT
|
161 |
-
logger.info("Starting to load STT
|
162 |
from transformers import AutoProcessor, AutoModelForCTC, WhisperProcessor, WhisperForConditionalGeneration
|
163 |
|
|
|
164 |
try:
|
165 |
logger.info("Loading MMS STT model...")
|
166 |
-
model_status["
|
167 |
-
|
168 |
-
|
169 |
-
|
170 |
-
stt_model.to(device)
|
171 |
logger.info("MMS STT model loaded successfully")
|
172 |
-
model_status["
|
173 |
except Exception as mms_error:
|
174 |
logger.error(f"Failed to load MMS STT model: {str(mms_error)}")
|
175 |
-
|
176 |
-
|
177 |
-
|
178 |
-
|
179 |
-
|
180 |
-
|
181 |
-
|
182 |
-
|
183 |
-
|
184 |
-
|
185 |
-
|
186 |
-
|
|
|
|
|
|
|
|
|
187 |
|
188 |
# Load MT model
|
189 |
logger.info("Starting to load MT model...")
|
@@ -203,7 +213,7 @@ def load_models_task():
|
|
203 |
error_message = f"MT model loading failed: {str(e)}"
|
204 |
return
|
205 |
|
206 |
-
# Load TTS model (default to Tagalog
|
207 |
logger.info("Starting to load TTS model...")
|
208 |
from transformers import VitsModel, AutoTokenizer
|
209 |
|
@@ -217,22 +227,25 @@ def load_models_task():
|
|
217 |
model_status["tts"] = "loaded"
|
218 |
except Exception as e:
|
219 |
logger.error(f"Failed to load TTS model for Tagalog: {str(e)}")
|
220 |
-
# Fallback to English TTS if the target language fails
|
221 |
try:
|
222 |
logger.info("Falling back to MMS-TTS English model...")
|
223 |
tts_model = VitsModel.from_pretrained("facebook/mms-tts-eng")
|
224 |
tts_tokenizer = AutoTokenizer.from_pretrained("facebook/mms-tts-eng")
|
225 |
tts_model.to(device)
|
|
|
226 |
logger.info("Fallback TTS model loaded successfully")
|
227 |
model_status["tts"] = "loaded (fallback)"
|
228 |
-
current_tts_language = "eng"
|
229 |
except Exception as e2:
|
230 |
logger.error(f"Failed to load fallback TTS model: {str(e2)}")
|
231 |
model_status["tts"] = "failed"
|
232 |
error_message = f"TTS model loading failed: {str(e)} (fallback also failed: {str(e2)})"
|
233 |
return
|
234 |
|
235 |
-
|
|
|
|
|
|
|
|
|
236 |
logger.info("Model loading completed successfully")
|
237 |
|
238 |
except Exception as e:
|
@@ -284,7 +297,8 @@ async def health_check():
|
|
284 |
|
285 |
@app.post("/update-languages")
|
286 |
async def update_languages(source_lang: str = Form(...), target_lang: str = Form(...)):
|
287 |
-
global
|
|
|
288 |
|
289 |
if source_lang not in LANGUAGE_MAPPING or target_lang not in LANGUAGE_MAPPING:
|
290 |
raise HTTPException(status_code=400, detail="Invalid language selected")
|
@@ -292,43 +306,78 @@ async def update_languages(source_lang: str = Form(...), target_lang: str = Form
|
|
292 |
source_code = LANGUAGE_MAPPING[source_lang]
|
293 |
target_code = LANGUAGE_MAPPING[target_lang]
|
294 |
|
295 |
-
# Update the STT model based on the source language
|
296 |
try:
|
297 |
-
logger.info("Updating STT model for source language...")
|
298 |
from transformers import AutoProcessor, AutoModelForCTC, WhisperProcessor, WhisperForConditionalGeneration
|
299 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
300 |
|
301 |
-
|
302 |
-
|
303 |
-
stt_processor = AutoProcessor.from_pretrained("facebook/mms-1b-all")
|
304 |
-
stt_model = AutoModelForCTC.from_pretrained("facebook/mms-1b-all")
|
305 |
-
stt_model.to(device)
|
306 |
-
# Set the target language for MMS
|
307 |
-
if source_code in stt_processor.tokenizer.vocab.keys():
|
308 |
-
stt_processor.tokenizer.set_target_lang(source_code)
|
309 |
-
stt_model.load_adapter(source_code)
|
310 |
-
logger.info(f"MMS STT model updated to {source_code}")
|
311 |
-
model_status["stt"] = "loaded_mms"
|
312 |
-
else:
|
313 |
-
logger.warning(f"Language {source_code} not supported by MMS, using default")
|
314 |
-
model_status["stt"] = "loaded_mms_default"
|
315 |
-
except Exception as mms_error:
|
316 |
-
logger.error(f"Failed to load MMS STT model for {source_code}: {str(mms_error)}")
|
317 |
-
logger.info("Falling back to Whisper STT model...")
|
318 |
try:
|
319 |
-
|
320 |
-
|
321 |
-
|
322 |
-
|
323 |
-
|
|
|
|
|
|
|
324 |
except Exception as whisper_error:
|
325 |
-
logger.error(f"Failed to load Whisper STT model: {str(whisper_error)}")
|
326 |
-
|
327 |
-
|
328 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
329 |
except Exception as e:
|
330 |
logger.error(f"Error updating STT model: {str(e)}")
|
331 |
-
model_status["
|
|
|
332 |
error_message = f"STT model update failed: {str(e)}"
|
333 |
return {"status": "failed", "error": error_message}
|
334 |
|
@@ -466,7 +515,8 @@ async def translate_text(text: str = Form(...), source_lang: str = Form(...), ta
|
|
466 |
@app.post("/translate-audio")
|
467 |
async def translate_audio(audio: UploadFile = File(...), source_lang: str = Form(...), target_lang: str = Form(...)):
|
468 |
"""Endpoint to transcribe, translate, and convert audio to speech"""
|
469 |
-
global
|
|
|
470 |
|
471 |
if not audio:
|
472 |
raise HTTPException(status_code=400, detail="No audio file provided")
|
@@ -477,17 +527,37 @@ async def translate_audio(audio: UploadFile = File(...), source_lang: str = Form
|
|
477 |
request_id = str(uuid.uuid4())
|
478 |
|
479 |
# Check if STT model is loaded
|
480 |
-
|
481 |
-
|
482 |
-
|
483 |
-
|
484 |
-
|
485 |
-
|
486 |
-
"
|
487 |
-
|
488 |
-
|
489 |
-
|
490 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
491 |
|
492 |
# Save the uploaded audio to a temporary file
|
493 |
with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as temp_file:
|
@@ -526,24 +596,30 @@ async def translate_audio(audio: UploadFile = File(...), source_lang: str = Form
|
|
526 |
|
527 |
# Step 3: Transcribe the audio (STT)
|
528 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
529 |
-
logger.info(f"Using device: {device}")
|
530 |
-
inputs = stt_processor(waveform.numpy(), sampling_rate=16000, return_tensors="pt").to(device)
|
531 |
-
logger.info("Audio processed, generating transcription...")
|
532 |
|
533 |
-
|
534 |
-
|
535 |
-
|
536 |
-
|
537 |
-
|
538 |
-
|
539 |
-
|
540 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
541 |
predicted_ids = torch.argmax(logits, dim=-1)
|
542 |
-
transcription =
|
543 |
logger.info(f"Transcription completed: {transcription}")
|
544 |
|
545 |
# Step 4: Translate the transcribed text (MT)
|
546 |
-
source_code = LANGUAGE_MAPPING[source_lang]
|
547 |
target_code = LANGUAGE_MAPPING[target_lang]
|
548 |
|
549 |
if model_status["mt"] == "loaded" and mt_model is not None and mt_tokenizer is not None:
|
@@ -618,7 +694,8 @@ async def translate_audio(audio: UploadFile = File(...), source_lang: str = Form
|
|
618 |
except Exception as e:
|
619 |
logger.error(f"Error during TTS conversion: {str(e)}")
|
620 |
output_audio_url = None
|
621 |
-
|
|
|
622 |
"request_id": request_id,
|
623 |
"status": "completed",
|
624 |
"message": "Transcription, translation, and TTS completed (or partially completed).",
|
|
|
35 |
loading_in_progress = False
|
36 |
loading_thread = None
|
37 |
model_status = {
|
38 |
+
"stt_mms": "not_loaded",
|
39 |
+
"stt_whisper": "not_loaded",
|
40 |
"mt": "not_loaded",
|
41 |
"tts": "not_loaded"
|
42 |
}
|
43 |
error_message = None
|
44 |
current_tts_language = "tgl" # Track the current TTS language
|
45 |
+
current_stt_model = None # Track which STT model is active ("mms" or "whisper")
|
46 |
|
47 |
# Model instances
|
48 |
+
stt_mms_processor = None
|
49 |
+
stt_mms_model = None
|
50 |
+
stt_whisper_processor = None
|
51 |
+
stt_whisper_model = None
|
52 |
mt_model = None
|
53 |
mt_tokenizer = None
|
54 |
tts_model = None
|
|
|
156 |
# Function to load models in background
|
157 |
def load_models_task():
|
158 |
global models_loaded, loading_in_progress, model_status, error_message
|
159 |
+
global stt_mms_processor, stt_mms_model, stt_whisper_processor, stt_whisper_model
|
160 |
+
global mt_model, mt_tokenizer, tts_model, tts_tokenizer
|
161 |
|
162 |
try:
|
163 |
loading_in_progress = True
|
164 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
165 |
|
166 |
+
# Load STT models (MMS and Whisper Small)
|
167 |
+
logger.info("Starting to load STT models...")
|
168 |
from transformers import AutoProcessor, AutoModelForCTC, WhisperProcessor, WhisperForConditionalGeneration
|
169 |
|
170 |
+
# Load MMS STT model
|
171 |
try:
|
172 |
logger.info("Loading MMS STT model...")
|
173 |
+
model_status["stt_mms"] = "loading"
|
174 |
+
stt_mms_processor = AutoProcessor.from_pretrained("facebook/mms-1b-all")
|
175 |
+
stt_mms_model = AutoModelForCTC.from_pretrained("facebook/mms-1b-all")
|
176 |
+
stt_mms_model.to(device)
|
|
|
177 |
logger.info("MMS STT model loaded successfully")
|
178 |
+
model_status["stt_mms"] = "loaded"
|
179 |
except Exception as mms_error:
|
180 |
logger.error(f"Failed to load MMS STT model: {str(mms_error)}")
|
181 |
+
model_status["stt_mms"] = "failed"
|
182 |
+
error_message = f"MMS STT model loading failed: {str(mms_error)}"
|
183 |
+
|
184 |
+
# Load Whisper Small STT model
|
185 |
+
try:
|
186 |
+
logger.info("Loading Whisper Small STT model...")
|
187 |
+
model_status["stt_whisper"] = "loading"
|
188 |
+
stt_whisper_processor = WhisperProcessor.from_pretrained("openai/whisper-small")
|
189 |
+
stt_whisper_model = WhisperForConditionalGeneration.from_pretrained("openai/whisper-small")
|
190 |
+
stt_whisper_model.to(device)
|
191 |
+
logger.info("Whisper Small STT model loaded successfully")
|
192 |
+
model_status["stt_whisper"] = "loaded"
|
193 |
+
except Exception as whisper_error:
|
194 |
+
logger.error(f"Failed to load Whisper Small STT model: {str(whisper_error)}")
|
195 |
+
model_status["stt_whisper"] = "failed"
|
196 |
+
error_message = f"Whisper Small STT model loading failed: {str(whisper_error)}"
|
197 |
|
198 |
# Load MT model
|
199 |
logger.info("Starting to load MT model...")
|
|
|
213 |
error_message = f"MT model loading failed: {str(e)}"
|
214 |
return
|
215 |
|
216 |
+
# Load TTS model (default to Tagalog)
|
217 |
logger.info("Starting to load TTS model...")
|
218 |
from transformers import VitsModel, AutoTokenizer
|
219 |
|
|
|
227 |
model_status["tts"] = "loaded"
|
228 |
except Exception as e:
|
229 |
logger.error(f"Failed to load TTS model for Tagalog: {str(e)}")
|
|
|
230 |
try:
|
231 |
logger.info("Falling back to MMS-TTS English model...")
|
232 |
tts_model = VitsModel.from_pretrained("facebook/mms-tts-eng")
|
233 |
tts_tokenizer = AutoTokenizer.from_pretrained("facebook/mms-tts-eng")
|
234 |
tts_model.to(device)
|
235 |
+
current_tts_language = "eng"
|
236 |
logger.info("Fallback TTS model loaded successfully")
|
237 |
model_status["tts"] = "loaded (fallback)"
|
|
|
238 |
except Exception as e2:
|
239 |
logger.error(f"Failed to load fallback TTS model: {str(e2)}")
|
240 |
model_status["tts"] = "failed"
|
241 |
error_message = f"TTS model loading failed: {str(e)} (fallback also failed: {str(e2)})"
|
242 |
return
|
243 |
|
244 |
+
# Check if critical models are loaded
|
245 |
+
stt_loaded = model_status["stt_mms"] == "loaded" or model_status["stt_whisper"] == "loaded"
|
246 |
+
mt_loaded = model_status["mt"] == "loaded"
|
247 |
+
tts_loaded = model_status["tts"].startswith("loaded")
|
248 |
+
models_loaded = stt_loaded and mt_loaded and tts_loaded
|
249 |
logger.info("Model loading completed successfully")
|
250 |
|
251 |
except Exception as e:
|
|
|
297 |
|
298 |
@app.post("/update-languages")
|
299 |
async def update_languages(source_lang: str = Form(...), target_lang: str = Form(...)):
|
300 |
+
global stt_mms_processor, stt_mms_model, stt_whisper_processor, stt_whisper_model
|
301 |
+
global tts_model, tts_tokenizer, current_tts_language, current_stt_model
|
302 |
|
303 |
if source_lang not in LANGUAGE_MAPPING or target_lang not in LANGUAGE_MAPPING:
|
304 |
raise HTTPException(status_code=400, detail="Invalid language selected")
|
|
|
306 |
source_code = LANGUAGE_MAPPING[source_lang]
|
307 |
target_code = LANGUAGE_MAPPING[target_lang]
|
308 |
|
309 |
+
# Update the STT model based on the source language
|
310 |
try:
|
311 |
+
logger.info(f"Updating STT model for source language {source_code}...")
|
312 |
from transformers import AutoProcessor, AutoModelForCTC, WhisperProcessor, WhisperForConditionalGeneration
|
313 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
314 |
|
315 |
+
# Use Whisper Small for English or Tagalog, MMS for others
|
316 |
+
if source_code in ["eng", "tgl"]:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
317 |
try:
|
318 |
+
logger.info(f"Loading Whisper Small STT model for {source_code}...")
|
319 |
+
if model_status["stt_whisper"] != "loaded":
|
320 |
+
stt_whisper_processor = WhisperProcessor.from_pretrained("openai/whisper-small")
|
321 |
+
stt_whisper_model = WhisperForConditionalGeneration.from_pretrained("openai/whisper-small")
|
322 |
+
stt_whisper_model.to(device)
|
323 |
+
model_status["stt_whisper"] = "loaded"
|
324 |
+
current_stt_model = "whisper"
|
325 |
+
logger.info("Whisper Small STT model selected")
|
326 |
except Exception as whisper_error:
|
327 |
+
logger.error(f"Failed to load Whisper Small STT model: {str(whisper_error)}")
|
328 |
+
try:
|
329 |
+
logger.info(f"Falling back to MMS STT model for {source_code}...")
|
330 |
+
if model_status["stt_mms"] != "loaded":
|
331 |
+
stt_mms_processor = AutoProcessor.from_pretrained("facebook/mms-1b-all")
|
332 |
+
stt_mms_model = AutoModelForCTC.from_pretrained("facebook/mms-1b-all")
|
333 |
+
stt_mms_model.to(device)
|
334 |
+
model_status["stt_mms"] = "loaded"
|
335 |
+
if source_code in stt_mms_processor.tokenizer.vocab.keys():
|
336 |
+
stt_mms_processor.tokenizer.set_target_lang(source_code)
|
337 |
+
stt_mms_model.load_adapter(source_code)
|
338 |
+
current_stt_model = "mms"
|
339 |
+
logger.info("MMS STT model selected as fallback")
|
340 |
+
except Exception as mms_error:
|
341 |
+
logger.error(f"Failed to load MMS STT model: {str(mms_error)}")
|
342 |
+
model_status["stt_mms"] = "failed"
|
343 |
+
model_status["stt_whisper"] = "failed"
|
344 |
+
error_message = f"STT model update failed: Whisper error: {str(whisper_error)}, MMS error: {str(mms_error)}"
|
345 |
+
return {"status": "failed", "error": error_message}
|
346 |
+
else:
|
347 |
+
try:
|
348 |
+
logger.info(f"Loading MMS STT model for {source_code}...")
|
349 |
+
if model_status["stt_mms"] != "loaded":
|
350 |
+
stt_mms_processor = AutoProcessor.from_pretrained("facebook/mms-1b-all")
|
351 |
+
stt_mms_model = AutoModelForCTC.from_pretrained("facebook/mms-1b-all")
|
352 |
+
stt_mms_model.to(device)
|
353 |
+
model_status["stt_mms"] = "loaded"
|
354 |
+
if source_code in stt_mms_processor.tokenizer.vocab.keys():
|
355 |
+
stt_mms_processor.tokenizer.set_target_lang(source_code)
|
356 |
+
stt_mms_model.load_adapter(source_code)
|
357 |
+
current_stt_model = "mms"
|
358 |
+
logger.info(f"MMS STT model selected for {source_code}")
|
359 |
+
except Exception as mms_error:
|
360 |
+
logger.error(f"Failed to load MMS STT model: {str(mms_error)}")
|
361 |
+
try:
|
362 |
+
logger.info(f"Falling back to Whisper Small STT model for {source_code}...")
|
363 |
+
if model_status["stt_whisper"] != "loaded":
|
364 |
+
stt_whisper_processor = WhisperProcessor.from_pretrained("openai/whisper-small")
|
365 |
+
stt_whisper_model = WhisperForConditionalGeneration.from_pretrained("openai/whisper-small")
|
366 |
+
stt_whisper_model.to(device)
|
367 |
+
model_status["stt_whisper"] = "loaded"
|
368 |
+
current_stt_model = "whisper"
|
369 |
+
logger.info("Whisper Small STT model selected as fallback")
|
370 |
+
except Exception as whisper_error:
|
371 |
+
logger.error(f"Failed to load Whisper Small STT model: {str(whisper_error)}")
|
372 |
+
model_status["stt_mms"] = "failed"
|
373 |
+
model_status["stt_whisper"] = "failed"
|
374 |
+
error_message = f"STT model update failed: MMS error: {str(mms_error)}, Whisper error: {str(whisper_error)}"
|
375 |
+
return {"status": "failed", "error": error_message}
|
376 |
+
|
377 |
except Exception as e:
|
378 |
logger.error(f"Error updating STT model: {str(e)}")
|
379 |
+
model_status["stt_mms"] = "failed"
|
380 |
+
model_status["stt_whisper"] = "failed"
|
381 |
error_message = f"STT model update failed: {str(e)}"
|
382 |
return {"status": "failed", "error": error_message}
|
383 |
|
|
|
515 |
@app.post("/translate-audio")
|
516 |
async def translate_audio(audio: UploadFile = File(...), source_lang: str = Form(...), target_lang: str = Form(...)):
|
517 |
"""Endpoint to transcribe, translate, and convert audio to speech"""
|
518 |
+
global stt_mms_processor, stt_mms_model, stt_whisper_processor, stt_whisper_model
|
519 |
+
global mt_model, mt_tokenizer, tts_model, tts_tokenizer, current_tts_language, current_stt_model
|
520 |
|
521 |
if not audio:
|
522 |
raise HTTPException(status_code=400, detail="No audio file provided")
|
|
|
527 |
request_id = str(uuid.uuid4())
|
528 |
|
529 |
# Check if STT model is loaded
|
530 |
+
source_code = LANGUAGE_MAPPING[source_lang]
|
531 |
+
use_whisper = source_code in ["eng", "tgl"]
|
532 |
+
|
533 |
+
if use_whisper and (model_status["stt_whisper"] != "loaded" or stt_whisper_processor is None or stt_whisper_model is None):
|
534 |
+
logger.warning("Whisper Small STT model not loaded, falling back to MMS")
|
535 |
+
if model_status["stt_mms"] != "loaded" or stt_mms_processor is None or stt_mms_model is None:
|
536 |
+
logger.warning("MMS STT model not loaded either, returning placeholder response")
|
537 |
+
return {
|
538 |
+
"request_id": request_id,
|
539 |
+
"status": "processing",
|
540 |
+
"message": "STT models not loaded yet. Please try again later.",
|
541 |
+
"source_text": "Transcription not available",
|
542 |
+
"translated_text": "Translation not available",
|
543 |
+
"is_inappropriate": False,
|
544 |
+
"output_audio": None
|
545 |
+
}
|
546 |
+
use_whisper = False
|
547 |
+
elif not use_whisper and (model_status["stt_mms"] != "loaded" or stt_mms_processor is None or stt_mms_model is None):
|
548 |
+
logger.warning("MMS STT model not loaded, falling back to Whisper Small")
|
549 |
+
if model_status["stt_whisper"] != "loaded" or stt_whisper_processor is None or stt_whisper_model is None:
|
550 |
+
logger.warning("Whisper Small STT model not loaded either, returning placeholder response")
|
551 |
+
return {
|
552 |
+
"request_id": request_id,
|
553 |
+
"status": "processing",
|
554 |
+
"message": "STT models not loaded yet. Please try again later.",
|
555 |
+
"source_text": "Transcription not available",
|
556 |
+
"translated_text": "Translation not available",
|
557 |
+
"is_inappropriate": False,
|
558 |
+
"output_audio": None
|
559 |
+
}
|
560 |
+
use_whisper = True
|
561 |
|
562 |
# Save the uploaded audio to a temporary file
|
563 |
with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as temp_file:
|
|
|
596 |
|
597 |
# Step 3: Transcribe the audio (STT)
|
598 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
599 |
+
logger.info(f"Using device: {device} with {'Whisper Small' if use_whisper else 'MMS'} model")
|
|
|
|
|
600 |
|
601 |
+
if use_whisper:
|
602 |
+
processor = stt_whisper_processor
|
603 |
+
model = stt_whisper_model
|
604 |
+
inputs = processor(waveform.numpy()[0], sampling_rate=16000, return_tensors="pt").to(device)
|
605 |
+
with torch.no_grad():
|
606 |
+
language = "en" if source_code == "eng" else "tl" if source_code == "tgl" else None
|
607 |
+
generated_ids = model.generate(**inputs, language=language, task="transcribe")
|
608 |
+
transcription = processor.batch_decode(generated_ids, skip_special_tokens=True)[0]
|
609 |
+
else:
|
610 |
+
processor = stt_mms_processor
|
611 |
+
model = stt_mms_model
|
612 |
+
if source_code in processor.tokenizer.vocab.keys():
|
613 |
+
processor.tokenizer.set_target_lang(source_code)
|
614 |
+
model.load_adapter(source_code)
|
615 |
+
inputs = processor(waveform.numpy(), sampling_rate=16000, return_tensors="pt").to(device)
|
616 |
+
with torch.no_grad():
|
617 |
+
logits = model(**inputs).logits
|
618 |
predicted_ids = torch.argmax(logits, dim=-1)
|
619 |
+
transcription = processor.batch_decode(predicted_ids)[0]
|
620 |
logger.info(f"Transcription completed: {transcription}")
|
621 |
|
622 |
# Step 4: Translate the transcribed text (MT)
|
|
|
623 |
target_code = LANGUAGE_MAPPING[target_lang]
|
624 |
|
625 |
if model_status["mt"] == "loaded" and mt_model is not None and mt_tokenizer is not None:
|
|
|
694 |
except Exception as e:
|
695 |
logger.error(f"Error during TTS conversion: {str(e)}")
|
696 |
output_audio_url = None
|
697 |
+
|
698 |
+
return {
|
699 |
"request_id": request_id,
|
700 |
"status": "completed",
|
701 |
"message": "Transcription, translation, and TTS completed (or partially completed).",
|