Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -31,16 +31,20 @@ os.makedirs(AUDIO_DIR, exist_ok=True)
|
|
31 |
app.mount("/audio_output", StaticFiles(directory=AUDIO_DIR), name="audio_output")
|
32 |
|
33 |
# Global variables to track application state
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
"
|
39 |
-
|
40 |
-
|
41 |
-
|
|
|
|
|
|
|
|
|
|
|
42 |
}
|
43 |
-
error_message = None
|
44 |
|
45 |
# Define the valid languages and mappings
|
46 |
LANGUAGE_MAPPING = {
|
@@ -61,30 +65,25 @@ NLLB_LANGUAGE_CODES = {
|
|
61 |
"pag": "pag_Latn"
|
62 |
}
|
63 |
|
64 |
-
#
|
65 |
-
|
66 |
-
|
67 |
-
"
|
68 |
-
"
|
69 |
-
|
70 |
-
}
|
71 |
|
72 |
-
mt_model = None
|
73 |
-
mt_tokenizer = None
|
74 |
|
75 |
-
|
76 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
77 |
|
78 |
-
# List of inappropriate words/phrases for content filtering
|
79 |
-
INAPPROPRIATE_WORDS = [
|
80 |
-
"fuck", "shit", "asshole", "bitch", "dick", "pussy", "cunt",
|
81 |
-
"whore", "slut", "bastard", "damn", "hell", "piss", "nigger",
|
82 |
-
"faggot", "retard", "crap", "porn", "sex", "penis", "vagina",
|
83 |
-
# Tagalog inappropriate words
|
84 |
-
"puta", "putangina", "gago", "bobo", "tanga", "tarantado",
|
85 |
-
"inutil", "ulol", "kantot", "jakol", "tite", "pekpek",
|
86 |
-
# Add more as needed
|
87 |
-
]
|
88 |
|
89 |
# Function to save PCM data as a WAV file
|
90 |
def save_pcm_to_wav(pcm_data: list, sample_rate: int, output_path: str):
|
@@ -99,6 +98,7 @@ def save_pcm_to_wav(pcm_data: list, sample_rate: int, output_path: str):
|
|
99 |
# Write the 16-bit PCM data as bytes (little-endian)
|
100 |
wav_file.writeframes(pcm_array.tobytes())
|
101 |
|
|
|
102 |
# Function to detect speech using an energy-based approach
|
103 |
def detect_speech(waveform: torch.Tensor, sample_rate: int, threshold: float = 0.01, min_speech_duration: float = 0.5) -> bool:
|
104 |
"""
|
@@ -123,52 +123,6 @@ def detect_speech(waveform: torch.Tensor, sample_rate: int, threshold: float = 0
|
|
123 |
# For now, we assume if RMS is above threshold, there is speech
|
124 |
return True
|
125 |
|
126 |
-
# Function to check for inappropriate content
|
127 |
-
def check_inappropriate_content(text: str) -> bool:
|
128 |
-
"""
|
129 |
-
Checks if the text contains inappropriate content.
|
130 |
-
Returns True if inappropriate content is detected, False otherwise.
|
131 |
-
"""
|
132 |
-
# Convert text to lowercase for case-insensitive matching
|
133 |
-
text_lower = text.lower()
|
134 |
-
|
135 |
-
# Check if any inappropriate word is in the text
|
136 |
-
for word in INAPPROPRIATE_WORDS:
|
137 |
-
# Use word boundary regex to match whole words only
|
138 |
-
pattern = r'\b' + re.escape(word) + r'\b'
|
139 |
-
if re.search(pattern, text_lower):
|
140 |
-
logger.warning(f"Inappropriate content detected: '{word}'")
|
141 |
-
return True
|
142 |
-
|
143 |
-
return False
|
144 |
-
|
145 |
-
# Function to perform text-to-speech conversion
|
146 |
-
def text_to_speech(text: str, language_code: str) -> Tuple[Optional[np.ndarray], Optional[int], Optional[str]]:
|
147 |
-
"""
|
148 |
-
Convert text to speech using the appropriate TTS model.
|
149 |
-
Returns the speech waveform, sample rate, and any error message.
|
150 |
-
"""
|
151 |
-
if language_code not in tts_models or tts_models[language_code] is None:
|
152 |
-
error_msg = f"TTS model for {language_code} not loaded"
|
153 |
-
logger.error(error_msg)
|
154 |
-
return None, None, error_msg
|
155 |
-
|
156 |
-
try:
|
157 |
-
device = "cuda" if torch.cuda.is_available() else "cpu"
|
158 |
-
inputs = tts_tokenizers[language_code](text, return_tensors="pt").to(device)
|
159 |
-
|
160 |
-
with torch.no_grad():
|
161 |
-
output = tts_models[language_code](**inputs)
|
162 |
-
|
163 |
-
speech = output.waveform.cpu().numpy().squeeze()
|
164 |
-
speech = (speech * 32767).astype(np.int16)
|
165 |
-
sample_rate = tts_models[language_code].config.sampling_rate
|
166 |
-
|
167 |
-
return speech, sample_rate, None
|
168 |
-
except Exception as e:
|
169 |
-
error_msg = f"Error during TTS conversion: {str(e)}"
|
170 |
-
logger.error(error_msg)
|
171 |
-
return None, None, error_msg
|
172 |
|
173 |
# Function to clean up old audio files
|
174 |
def cleanup_old_audio_files():
|
@@ -185,142 +139,157 @@ def cleanup_old_audio_files():
|
|
185 |
except Exception as e:
|
186 |
logger.error(f"Error deleting file {file_path}: {str(e)}")
|
187 |
|
|
|
188 |
# Background task to periodically clean up audio files
|
189 |
def schedule_cleanup():
|
190 |
while True:
|
191 |
cleanup_old_audio_files()
|
192 |
time.sleep(300) # Run every 5 minutes (300 seconds)
|
193 |
|
194 |
-
|
195 |
-
|
196 |
-
|
197 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
198 |
|
199 |
try:
|
200 |
-
|
|
|
|
|
|
|
201 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
202 |
|
203 |
-
|
204 |
-
|
|
|
205 |
|
206 |
-
|
207 |
-
|
208 |
-
|
209 |
-
|
210 |
-
|
211 |
-
|
212 |
-
|
213 |
-
|
214 |
-
|
215 |
-
|
216 |
-
|
217 |
-
|
218 |
-
|
219 |
-
|
220 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
221 |
|
222 |
-
|
223 |
-
|
224 |
-
logger.info("Loading Whisper Small STT model...")
|
225 |
-
model_status["stt_whisper_small"] = "loading"
|
226 |
-
from transformers import WhisperProcessor, WhisperForConditionalGeneration
|
227 |
-
|
228 |
-
stt_models["whisper_small_processor"] = WhisperProcessor.from_pretrained("openai/whisper-small")
|
229 |
-
stt_models["whisper_small"] = WhisperForConditionalGeneration.from_pretrained("openai/whisper-small")
|
230 |
-
stt_models["whisper_small"].to(device)
|
231 |
-
logger.info("Whisper Small STT model loaded successfully")
|
232 |
-
model_status["stt_whisper_small"] = "loaded"
|
233 |
-
except Exception as whisper_error:
|
234 |
-
logger.error(f"Failed to load Whisper Small STT model: {str(whisper_error)}")
|
235 |
-
model_status["stt_whisper_small"] = "failed"
|
236 |
-
error_message = f"Whisper Small STT model loading failed: {str(whisper_error)}"
|
237 |
-
|
238 |
-
# Load MT model
|
239 |
-
logger.info("Starting to load MT model...")
|
240 |
-
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer
|
241 |
|
242 |
-
|
243 |
-
|
244 |
-
|
245 |
-
mt_model = AutoModelForSeq2SeqLM.from_pretrained("facebook/nllb-200-distilled-600M")
|
246 |
-
mt_tokenizer = AutoTokenizer.from_pretrained("facebook/nllb-200-distilled-600M")
|
247 |
-
mt_model.to(device)
|
248 |
-
logger.info("MT model loaded successfully")
|
249 |
-
model_status["mt"] = "loaded"
|
250 |
-
except Exception as e:
|
251 |
-
logger.error(f"Failed to load MT model: {str(e)}")
|
252 |
-
model_status["mt"] = "failed"
|
253 |
-
error_message = f"MT model loading failed: {str(e)}"
|
254 |
|
255 |
-
|
256 |
-
logger.info("
|
257 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
258 |
|
259 |
-
|
260 |
-
|
261 |
-
logger.info(f"Loading MMS-TTS model for {lang_name} ({lang_code})...")
|
262 |
-
model_status["tts"][lang_code] = "loading"
|
263 |
-
|
264 |
-
# Load the model and tokenizer
|
265 |
-
tts_models[lang_code] = VitsModel.from_pretrained(f"facebook/mms-tts-{lang_code}")
|
266 |
-
tts_tokenizers[lang_code] = AutoTokenizer.from_pretrained(f"facebook/mms-tts-{lang_code}")
|
267 |
-
|
268 |
-
# Move to GPU if available
|
269 |
-
tts_models[lang_code].to(device)
|
270 |
-
|
271 |
-
logger.info(f"TTS model for {lang_name} loaded successfully")
|
272 |
-
model_status["tts"][lang_code] = "loaded"
|
273 |
-
except Exception as e:
|
274 |
-
logger.error(f"Failed to load TTS model for {lang_name}: {str(e)}")
|
275 |
-
model_status["tts"][lang_code] = "failed"
|
276 |
-
|
277 |
-
# Try to load English as fallback if this is not English
|
278 |
-
if lang_code != "eng":
|
279 |
-
try:
|
280 |
-
logger.info(f"Trying to load English TTS model as fallback for {lang_name}...")
|
281 |
-
# Only load English model once if not already loaded
|
282 |
-
if "eng" not in tts_models or tts_models["eng"] is None:
|
283 |
-
tts_models["eng"] = VitsModel.from_pretrained("facebook/mms-tts-eng")
|
284 |
-
tts_tokenizers["eng"] = AutoTokenizer.from_pretrained("facebook/mms-tts-eng")
|
285 |
-
tts_models["eng"].to(device)
|
286 |
-
model_status["tts"]["eng"] = "loaded"
|
287 |
-
|
288 |
-
# Point this language to use English model
|
289 |
-
tts_models[lang_code] = tts_models["eng"]
|
290 |
-
tts_tokenizers[lang_code] = tts_tokenizers["eng"]
|
291 |
-
model_status["tts"][lang_code] = "loaded (fallback to eng)"
|
292 |
-
except Exception as e2:
|
293 |
-
logger.error(f"Failed to load English fallback TTS model: {str(e2)}")
|
294 |
-
model_status["tts"][lang_code] = "failed (with fallback)"
|
295 |
|
296 |
-
|
297 |
-
|
298 |
-
|
299 |
-
mt_loaded = model_status["mt"] == "loaded"
|
300 |
-
any_tts_loaded = any(status == "loaded" or status.startswith("loaded (fallback")
|
301 |
-
for status in model_status["tts"].values())
|
302 |
|
303 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
304 |
|
305 |
-
|
306 |
-
|
307 |
-
|
308 |
-
|
309 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
310 |
except Exception as e:
|
311 |
-
|
312 |
-
logger.error(f"
|
|
|
313 |
finally:
|
314 |
-
|
315 |
|
316 |
-
# Start loading models in background
|
317 |
-
def start_model_loading():
|
318 |
-
global loading_thread, loading_in_progress
|
319 |
-
if not loading_in_progress:
|
320 |
-
loading_in_progress = True
|
321 |
-
loading_thread = threading.Thread(target=load_models_task)
|
322 |
-
loading_thread.daemon = True
|
323 |
-
loading_thread.start()
|
324 |
|
325 |
# Start the background cleanup task
|
326 |
def start_cleanup_task():
|
@@ -328,88 +297,130 @@ def start_cleanup_task():
|
|
328 |
cleanup_thread.daemon = True
|
329 |
cleanup_thread.start()
|
330 |
|
|
|
331 |
# Start the background processes when the app starts
|
332 |
@app.on_event("startup")
|
333 |
async def startup_event():
|
334 |
logger.info("Application starting up...")
|
335 |
-
start_model_loading()
|
336 |
start_cleanup_task()
|
337 |
|
|
|
338 |
@app.get("/")
|
339 |
async def root():
|
340 |
"""Root endpoint for default health check"""
|
341 |
logger.info("Root endpoint requested")
|
342 |
return {"status": "healthy"}
|
343 |
|
|
|
344 |
@app.get("/health")
|
345 |
async def health_check():
|
346 |
"""Health check endpoint that always returns successfully"""
|
347 |
-
global models_loaded, loading_in_progress, model_status, error_message
|
348 |
logger.info("Health check requested")
|
349 |
return {
|
350 |
"status": "healthy",
|
351 |
-
"
|
352 |
-
|
353 |
-
|
354 |
-
|
|
|
|
|
|
|
355 |
}
|
356 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
357 |
@app.post("/synthesize-speech")
|
358 |
async def synthesize_speech(text: str = Form(...), language: str = Form(...)):
|
359 |
"""Endpoint to synthesize speech from text without translation"""
|
360 |
if language not in LANGUAGE_MAPPING:
|
361 |
raise HTTPException(status_code=400, detail="Invalid language selected")
|
362 |
|
363 |
-
logger.info(f"Speech synthesis requested for text in {language}")
|
364 |
-
request_id = str(uuid.uuid4())
|
365 |
language_code = LANGUAGE_MAPPING[language]
|
|
|
366 |
|
367 |
-
#
|
368 |
-
if
|
369 |
return {
|
370 |
"request_id": request_id,
|
371 |
-
"status": "
|
372 |
-
"message":
|
373 |
-
"output_audio": None,
|
374 |
-
"is_inappropriate": False
|
375 |
}
|
376 |
|
377 |
-
|
378 |
-
|
379 |
-
|
380 |
-
|
381 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
382 |
|
383 |
-
|
|
|
384 |
return {
|
385 |
"request_id": request_id,
|
386 |
"status": "failed",
|
387 |
-
"message":
|
388 |
-
"
|
389 |
-
"
|
390 |
}
|
391 |
-
|
392 |
-
# Save the synthesized audio
|
393 |
-
output_filename = f"{request_id}.wav"
|
394 |
-
output_path = os.path.join(AUDIO_DIR, output_filename)
|
395 |
-
save_pcm_to_wav(speech.tolist(), sample_rate, output_path)
|
396 |
-
|
397 |
-
# Generate URL to the WAV file
|
398 |
-
output_audio_url = f"https://jerich-talklasapp2.hf.space/audio_output/{output_filename}"
|
399 |
-
|
400 |
-
return {
|
401 |
-
"request_id": request_id,
|
402 |
-
"status": "completed",
|
403 |
-
"message": "Speech synthesis completed",
|
404 |
-
"output_audio": output_audio_url,
|
405 |
-
"is_inappropriate": is_inappropriate
|
406 |
-
}
|
407 |
|
408 |
@app.post("/translate-text")
|
409 |
async def translate_text(text: str = Form(...), source_lang: str = Form(...), target_lang: str = Form(...)):
|
410 |
"""Endpoint to translate text and convert to speech"""
|
411 |
-
global mt_model, mt_tokenizer
|
412 |
-
|
413 |
if not text:
|
414 |
raise HTTPException(status_code=400, detail="No text provided")
|
415 |
if source_lang not in LANGUAGE_MAPPING or target_lang not in LANGUAGE_MAPPING:
|
@@ -418,64 +429,107 @@ async def translate_text(text: str = Form(...), source_lang: str = Form(...), ta
|
|
418 |
logger.info(f"Translate-text requested: {text} from {source_lang} to {target_lang}")
|
419 |
request_id = str(uuid.uuid4())
|
420 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
421 |
# Translate the text
|
422 |
source_code = LANGUAGE_MAPPING[source_lang]
|
423 |
target_code = LANGUAGE_MAPPING[target_lang]
|
424 |
translated_text = "Translation not available"
|
|
|
425 |
|
426 |
-
|
427 |
-
|
428 |
-
|
429 |
-
|
430 |
-
|
431 |
-
|
432 |
-
|
433 |
-
|
434 |
-
|
435 |
-
|
436 |
-
|
437 |
-
|
438 |
-
|
439 |
-
|
440 |
-
|
441 |
-
|
442 |
-
|
443 |
-
|
444 |
-
|
445 |
-
|
446 |
-
|
447 |
-
|
448 |
-
|
449 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
450 |
# Convert translated text to speech
|
451 |
-
speech, sample_rate, error = text_to_speech(translated_text, target_code)
|
452 |
-
|
453 |
output_audio_url = None
|
454 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
455 |
# Save the audio as a WAV file
|
456 |
output_filename = f"{request_id}.wav"
|
457 |
output_path = os.path.join(AUDIO_DIR, output_filename)
|
458 |
save_pcm_to_wav(speech.tolist(), sample_rate, output_path)
|
459 |
-
|
|
|
460 |
# Generate a URL to the WAV file
|
461 |
-
output_audio_url = f"https://jerich-
|
462 |
logger.info("TTS conversion completed")
|
|
|
|
|
|
|
463 |
|
464 |
return {
|
465 |
"request_id": request_id,
|
466 |
-
"status": "completed",
|
467 |
-
"message": "Translation and TTS completed
|
|
|
468 |
"source_text": text,
|
469 |
"translated_text": translated_text,
|
470 |
"output_audio": output_audio_url,
|
471 |
-
"
|
472 |
}
|
473 |
|
|
|
474 |
@app.post("/translate-audio")
|
475 |
async def translate_audio(audio: UploadFile = File(...), source_lang: str = Form(...), target_lang: str = Form(...)):
|
476 |
"""Endpoint to transcribe, translate, and convert audio to speech"""
|
477 |
-
global stt_models, mt_model, mt_tokenizer
|
478 |
-
|
479 |
if not audio:
|
480 |
raise HTTPException(status_code=400, detail="No audio file provided")
|
481 |
if source_lang not in LANGUAGE_MAPPING or target_lang not in LANGUAGE_MAPPING:
|
@@ -484,38 +538,35 @@ async def translate_audio(audio: UploadFile = File(...), source_lang: str = Form
|
|
484 |
logger.info(f"Translate-audio requested: {audio.filename} from {source_lang} to {target_lang}")
|
485 |
request_id = str(uuid.uuid4())
|
486 |
|
487 |
-
# Check if appropriate STT model is loaded
|
488 |
source_code = LANGUAGE_MAPPING[source_lang]
|
489 |
-
|
|
|
|
|
|
|
490 |
|
491 |
-
|
492 |
-
|
493 |
-
if
|
494 |
-
logger.warning("MMS STT model not loaded either, returning placeholder response")
|
495 |
return {
|
496 |
"request_id": request_id,
|
497 |
-
"status": "
|
498 |
-
"message": "STT
|
499 |
-
"source_text": "Transcription not available",
|
500 |
-
"translated_text": "Translation not available",
|
501 |
"output_audio": None,
|
502 |
-
"
|
503 |
}
|
504 |
-
|
505 |
-
|
506 |
-
logger.warning("MMS STT model not loaded for non-English/Tagalog, checking Whisper")
|
507 |
-
if model_status["stt_whisper_small"] != "loaded" or stt_models["whisper_small"] is None:
|
508 |
-
logger.warning("Whisper Small STT model not loaded either, returning placeholder response")
|
509 |
return {
|
510 |
"request_id": request_id,
|
511 |
-
"status": "
|
512 |
-
"message": "STT
|
513 |
-
"source_text": "Transcription not available",
|
514 |
-
"translated_text": "Translation not available",
|
515 |
"output_audio": None,
|
516 |
-
"
|
517 |
}
|
518 |
-
use_whisper = True # Fall back to Whisper
|
519 |
|
520 |
# Save the uploaded audio to a temporary file
|
521 |
with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as temp_file:
|
@@ -525,7 +576,7 @@ async def translate_audio(audio: UploadFile = File(...), source_lang: str = Form
|
|
525 |
transcription = "Transcription not available"
|
526 |
translated_text = "Translation not available"
|
527 |
output_audio_url = None
|
528 |
-
|
529 |
|
530 |
try:
|
531 |
# Step 1: Load and resample the audio using torchaudio
|
@@ -549,94 +600,132 @@ async def translate_audio(audio: UploadFile = File(...), source_lang: str = Form
|
|
549 |
"source_text": "No speech detected",
|
550 |
"translated_text": "No translation available",
|
551 |
"output_audio": None,
|
552 |
-
"
|
553 |
}
|
554 |
|
555 |
# Step 3: Transcribe the audio (STT)
|
556 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
557 |
-
logger.info(f"Using device: {device}
|
558 |
|
559 |
if use_whisper:
|
560 |
-
# Use Whisper
|
561 |
-
|
562 |
-
|
563 |
-
|
|
|
|
|
564 |
|
565 |
-
inputs = processor(waveform.numpy()[0], sampling_rate=16000, return_tensors="pt").to(device)
|
566 |
with torch.no_grad():
|
567 |
-
|
568 |
-
|
569 |
-
generated_ids = model.generate(
|
570 |
-
**inputs,
|
571 |
-
language=language,
|
572 |
-
task="transcribe"
|
573 |
-
)
|
574 |
-
transcription = processor.batch_decode(generated_ids, skip_special_tokens=True)[0]
|
575 |
else:
|
576 |
-
# Use MMS for other languages
|
577 |
-
|
578 |
-
|
579 |
-
|
|
|
|
|
|
|
|
|
580 |
|
581 |
-
|
582 |
-
|
583 |
-
model.load_adapter(source_code)
|
584 |
|
585 |
-
inputs = processor(waveform.numpy(), sampling_rate=16000, return_tensors="pt").to(device)
|
586 |
with torch.no_grad():
|
587 |
-
logits =
|
588 |
predicted_ids = torch.argmax(logits, dim=-1)
|
589 |
-
transcription =
|
590 |
-
|
591 |
logger.info(f"Transcription completed: {transcription}")
|
592 |
|
593 |
-
# Step 4:
|
594 |
-
|
595 |
-
|
596 |
-
|
597 |
-
|
598 |
-
|
599 |
-
|
600 |
-
|
601 |
-
|
602 |
-
|
603 |
-
|
604 |
-
|
605 |
-
|
606 |
-
|
607 |
-
|
608 |
-
|
609 |
-
|
610 |
-
|
611 |
-
|
612 |
-
|
613 |
-
|
614 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
615 |
|
616 |
-
# Step
|
617 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
618 |
|
619 |
-
# Step
|
620 |
-
|
621 |
-
|
622 |
-
|
|
|
|
|
|
|
|
|
623 |
# Save the audio as a WAV file
|
624 |
output_filename = f"{request_id}.wav"
|
625 |
output_path = os.path.join(AUDIO_DIR, output_filename)
|
626 |
save_pcm_to_wav(speech.tolist(), sample_rate, output_path)
|
627 |
-
|
|
|
628 |
# Generate a URL to the WAV file
|
629 |
-
output_audio_url = f"https://jerich-
|
630 |
logger.info("TTS conversion completed")
|
|
|
|
|
|
|
631 |
|
632 |
return {
|
633 |
"request_id": request_id,
|
634 |
-
"status": "completed",
|
635 |
-
"message": "Transcription, translation, and TTS completed
|
|
|
636 |
"source_text": transcription,
|
637 |
"translated_text": translated_text,
|
638 |
"output_audio": output_audio_url,
|
639 |
-
"
|
640 |
}
|
641 |
except Exception as e:
|
642 |
logger.error(f"Error during processing: {str(e)}")
|
@@ -647,11 +736,28 @@ async def translate_audio(audio: UploadFile = File(...), source_lang: str = Form
|
|
647 |
"source_text": transcription,
|
648 |
"translated_text": translated_text,
|
649 |
"output_audio": output_audio_url,
|
650 |
-
"
|
651 |
}
|
652 |
finally:
|
653 |
logger.info(f"Cleaning up temporary file: {temp_path}")
|
654 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
655 |
|
656 |
if __name__ == "__main__":
|
657 |
import uvicorn
|
|
|
31 |
app.mount("/audio_output", StaticFiles(directory=AUDIO_DIR), name="audio_output")
|
32 |
|
33 |
# Global variables to track application state
|
34 |
+
model_cache = {
|
35 |
+
"stt_whisper": {"model": None, "processor": None, "status": "not_loaded"},
|
36 |
+
"stt_mms": {"model": None, "processor": None, "status": "not_loaded"},
|
37 |
+
"mt": {"model": None, "tokenizer": None, "status": "not_loaded"},
|
38 |
+
"tts": {"model": None, "tokenizer": None, "status": "not_loaded", "language": None}
|
39 |
+
}
|
40 |
+
|
41 |
+
# Track loading status
|
42 |
+
loading_locks = {
|
43 |
+
"stt_whisper": threading.Lock(),
|
44 |
+
"stt_mms": threading.Lock(),
|
45 |
+
"mt": threading.Lock(),
|
46 |
+
"tts": threading.Lock()
|
47 |
}
|
|
|
48 |
|
49 |
# Define the valid languages and mappings
|
50 |
LANGUAGE_MAPPING = {
|
|
|
65 |
"pag": "pag_Latn"
|
66 |
}
|
67 |
|
68 |
+
# Inappropriate words list - this is a basic implementation
|
69 |
+
# In a production environment, you would use a more comprehensive solution
|
70 |
+
INAPPROPRIATE_WORDS = [
|
71 |
+
"putang", "tang ina", "gago", "puta", "bobo", "ulol", "pakyu", "tae",
|
72 |
+
"obscenity", "profanity", "explicit", "nsfw", "offensive"
|
73 |
+
]
|
|
|
74 |
|
|
|
|
|
75 |
|
76 |
+
# Function to detect inappropriate content
|
77 |
+
def detect_inappropriate_content(text: str) -> bool:
|
78 |
+
"""
|
79 |
+
Checks if the text contains any inappropriate words
|
80 |
+
"""
|
81 |
+
text_lower = text.lower()
|
82 |
+
for word in INAPPROPRIATE_WORDS:
|
83 |
+
if word in text_lower:
|
84 |
+
return True
|
85 |
+
return False
|
86 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
87 |
|
88 |
# Function to save PCM data as a WAV file
|
89 |
def save_pcm_to_wav(pcm_data: list, sample_rate: int, output_path: str):
|
|
|
98 |
# Write the 16-bit PCM data as bytes (little-endian)
|
99 |
wav_file.writeframes(pcm_array.tobytes())
|
100 |
|
101 |
+
|
102 |
# Function to detect speech using an energy-based approach
|
103 |
def detect_speech(waveform: torch.Tensor, sample_rate: int, threshold: float = 0.01, min_speech_duration: float = 0.5) -> bool:
|
104 |
"""
|
|
|
123 |
# For now, we assume if RMS is above threshold, there is speech
|
124 |
return True
|
125 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
126 |
|
127 |
# Function to clean up old audio files
|
128 |
def cleanup_old_audio_files():
|
|
|
139 |
except Exception as e:
|
140 |
logger.error(f"Error deleting file {file_path}: {str(e)}")
|
141 |
|
142 |
+
|
143 |
# Background task to periodically clean up audio files
|
144 |
def schedule_cleanup():
|
145 |
while True:
|
146 |
cleanup_old_audio_files()
|
147 |
time.sleep(300) # Run every 5 minutes (300 seconds)
|
148 |
|
149 |
+
|
150 |
+
# Function to load the Whisper STT model on demand
|
151 |
+
def load_whisper_model():
|
152 |
+
if model_cache["stt_whisper"]["status"] == "loaded":
|
153 |
+
return True
|
154 |
+
|
155 |
+
# Use lock to prevent multiple threads from loading the model simultaneously
|
156 |
+
if not loading_locks["stt_whisper"].acquire(blocking=False):
|
157 |
+
logger.info("Whisper model loading already in progress")
|
158 |
+
return False
|
159 |
|
160 |
try:
|
161 |
+
logger.info("Loading Whisper small model...")
|
162 |
+
model_cache["stt_whisper"]["status"] = "loading"
|
163 |
+
|
164 |
+
from transformers import WhisperProcessor, WhisperForConditionalGeneration
|
165 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
166 |
|
167 |
+
model_cache["stt_whisper"]["processor"] = WhisperProcessor.from_pretrained("openai/whisper-small")
|
168 |
+
model_cache["stt_whisper"]["model"] = WhisperForConditionalGeneration.from_pretrained("openai/whisper-small")
|
169 |
+
model_cache["stt_whisper"]["model"].to(device)
|
170 |
|
171 |
+
model_cache["stt_whisper"]["status"] = "loaded"
|
172 |
+
logger.info("Whisper small model loaded successfully")
|
173 |
+
return True
|
174 |
+
except Exception as e:
|
175 |
+
model_cache["stt_whisper"]["status"] = "failed"
|
176 |
+
logger.error(f"Failed to load Whisper model: {str(e)}")
|
177 |
+
return False
|
178 |
+
finally:
|
179 |
+
loading_locks["stt_whisper"].release()
|
180 |
+
|
181 |
+
|
182 |
+
# Function to load the MMS STT model on demand
|
183 |
+
def load_mms_stt_model():
|
184 |
+
if model_cache["stt_mms"]["status"] == "loaded":
|
185 |
+
return True
|
186 |
+
|
187 |
+
if not loading_locks["stt_mms"].acquire(blocking=False):
|
188 |
+
logger.info("MMS STT model loading already in progress")
|
189 |
+
return False
|
190 |
+
|
191 |
+
try:
|
192 |
+
logger.info("Loading MMS STT model...")
|
193 |
+
model_cache["stt_mms"]["status"] = "loading"
|
194 |
|
195 |
+
from transformers import AutoProcessor, AutoModelForCTC
|
196 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
197 |
|
198 |
+
model_cache["stt_mms"]["processor"] = AutoProcessor.from_pretrained("facebook/mms-1b-all")
|
199 |
+
model_cache["stt_mms"]["model"] = AutoModelForCTC.from_pretrained("facebook/mms-1b-all")
|
200 |
+
model_cache["stt_mms"]["model"].to(device)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
201 |
|
202 |
+
model_cache["stt_mms"]["status"] = "loaded"
|
203 |
+
logger.info("MMS STT model loaded successfully")
|
204 |
+
return True
|
205 |
+
except Exception as e:
|
206 |
+
model_cache["stt_mms"]["status"] = "failed"
|
207 |
+
logger.error(f"Failed to load MMS STT model: {str(e)}")
|
208 |
+
return False
|
209 |
+
finally:
|
210 |
+
loading_locks["stt_mms"].release()
|
211 |
+
|
212 |
+
|
213 |
+
# Function to load the MT model on demand
|
214 |
+
def load_mt_model():
|
215 |
+
if model_cache["mt"]["status"] == "loaded":
|
216 |
+
return True
|
217 |
+
|
218 |
+
if not loading_locks["mt"].acquire(blocking=False):
|
219 |
+
logger.info("MT model loading already in progress")
|
220 |
+
return False
|
221 |
+
|
222 |
+
try:
|
223 |
+
logger.info("Loading NLLB-200-distilled-600M model...")
|
224 |
+
model_cache["mt"]["status"] = "loading"
|
225 |
|
226 |
+
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer
|
227 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
228 |
|
229 |
+
model_cache["mt"]["model"] = AutoModelForSeq2SeqLM.from_pretrained("facebook/nllb-200-distilled-600M")
|
230 |
+
model_cache["mt"]["tokenizer"] = AutoTokenizer.from_pretrained("facebook/nllb-200-distilled-600M")
|
231 |
+
model_cache["mt"]["model"].to(device)
|
|
|
|
|
|
|
232 |
|
233 |
+
model_cache["mt"]["status"] = "loaded"
|
234 |
+
logger.info("MT model loaded successfully")
|
235 |
+
return True
|
236 |
+
except Exception as e:
|
237 |
+
model_cache["mt"]["status"] = "failed"
|
238 |
+
logger.error(f"Failed to load MT model: {str(e)}")
|
239 |
+
return False
|
240 |
+
finally:
|
241 |
+
loading_locks["mt"].release()
|
242 |
+
|
243 |
+
|
244 |
+
# Function to load the TTS model for a specific language on demand
|
245 |
+
def load_tts_model(language_code: str):
|
246 |
+
# If the model is already loaded for this language, return immediately
|
247 |
+
if (model_cache["tts"]["status"] == "loaded" and
|
248 |
+
model_cache["tts"]["language"] == language_code):
|
249 |
+
return True
|
250 |
+
|
251 |
+
if not loading_locks["tts"].acquire(blocking=False):
|
252 |
+
logger.info("TTS model loading already in progress")
|
253 |
+
return False
|
254 |
+
|
255 |
+
try:
|
256 |
+
logger.info(f"Loading MMS-TTS model for {language_code}...")
|
257 |
+
model_cache["tts"]["status"] = "loading"
|
258 |
|
259 |
+
from transformers import VitsModel, AutoTokenizer
|
260 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
261 |
+
|
262 |
+
try:
|
263 |
+
model_cache["tts"]["model"] = VitsModel.from_pretrained(f"facebook/mms-tts-{language_code}")
|
264 |
+
model_cache["tts"]["tokenizer"] = AutoTokenizer.from_pretrained(f"facebook/mms-tts-{language_code}")
|
265 |
+
model_cache["tts"]["model"].to(device)
|
266 |
+
model_cache["tts"]["language"] = language_code
|
267 |
+
model_cache["tts"]["status"] = "loaded"
|
268 |
+
logger.info(f"TTS model for {language_code} loaded successfully")
|
269 |
+
return True
|
270 |
+
except Exception as e:
|
271 |
+
logger.error(f"Failed to load TTS model for {language_code}: {str(e)}")
|
272 |
+
# Fallback to English TTS if the target language fails
|
273 |
+
try:
|
274 |
+
logger.info("Falling back to MMS-TTS English model...")
|
275 |
+
model_cache["tts"]["model"] = VitsModel.from_pretrained("facebook/mms-tts-eng")
|
276 |
+
model_cache["tts"]["tokenizer"] = AutoTokenizer.from_pretrained("facebook/mms-tts-eng")
|
277 |
+
model_cache["tts"]["model"].to(device)
|
278 |
+
model_cache["tts"]["language"] = "eng"
|
279 |
+
model_cache["tts"]["status"] = "loaded (fallback)"
|
280 |
+
logger.info("Fallback TTS model loaded successfully")
|
281 |
+
return True
|
282 |
+
except Exception as e2:
|
283 |
+
model_cache["tts"]["status"] = "failed"
|
284 |
+
logger.error(f"Failed to load fallback TTS model: {str(e2)}")
|
285 |
+
return False
|
286 |
except Exception as e:
|
287 |
+
model_cache["tts"]["status"] = "failed"
|
288 |
+
logger.error(f"Failed to setup TTS model: {str(e)}")
|
289 |
+
return False
|
290 |
finally:
|
291 |
+
loading_locks["tts"].release()
|
292 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
293 |
|
294 |
# Start the background cleanup task
|
295 |
def start_cleanup_task():
|
|
|
297 |
cleanup_thread.daemon = True
|
298 |
cleanup_thread.start()
|
299 |
|
300 |
+
|
301 |
# Start the background processes when the app starts
|
302 |
@app.on_event("startup")
|
303 |
async def startup_event():
|
304 |
logger.info("Application starting up...")
|
|
|
305 |
start_cleanup_task()
|
306 |
|
307 |
+
|
308 |
@app.get("/")
|
309 |
async def root():
|
310 |
"""Root endpoint for default health check"""
|
311 |
logger.info("Root endpoint requested")
|
312 |
return {"status": "healthy"}
|
313 |
|
314 |
+
|
315 |
@app.get("/health")
|
316 |
async def health_check():
|
317 |
"""Health check endpoint that always returns successfully"""
|
|
|
318 |
logger.info("Health check requested")
|
319 |
return {
|
320 |
"status": "healthy",
|
321 |
+
"model_status": {
|
322 |
+
"stt_whisper": model_cache["stt_whisper"]["status"],
|
323 |
+
"stt_mms": model_cache["stt_mms"]["status"],
|
324 |
+
"mt": model_cache["mt"]["status"],
|
325 |
+
"tts": model_cache["tts"]["status"],
|
326 |
+
"tts_language": model_cache["tts"]["language"]
|
327 |
+
}
|
328 |
}
|
329 |
|
330 |
+
|
331 |
+
@app.post("/update-languages")
|
332 |
+
async def update_languages(source_lang: str = Form(...), target_lang: str = Form(...)):
|
333 |
+
"""
|
334 |
+
Update the language settings for translation services
|
335 |
+
Will trigger loading of necessary models if not already loaded
|
336 |
+
"""
|
337 |
+
if source_lang not in LANGUAGE_MAPPING or target_lang not in LANGUAGE_MAPPING:
|
338 |
+
raise HTTPException(status_code=400, detail="Invalid language selected")
|
339 |
+
|
340 |
+
source_code = LANGUAGE_MAPPING[source_lang]
|
341 |
+
target_code = LANGUAGE_MAPPING[target_lang]
|
342 |
+
|
343 |
+
# Determine which STT model to use based on the source language
|
344 |
+
if source_code in ["eng", "tgl"]:
|
345 |
+
# Load Whisper for English or Tagalog
|
346 |
+
if not load_whisper_model():
|
347 |
+
return {"status": "pending", "message": "Whisper model loading in progress"}
|
348 |
+
else:
|
349 |
+
# Load MMS for other Philippine languages
|
350 |
+
if not load_mms_stt_model():
|
351 |
+
return {"status": "pending", "message": "MMS STT model loading in progress"}
|
352 |
+
|
353 |
+
# Load the MT model if not already loaded
|
354 |
+
if not load_mt_model():
|
355 |
+
return {"status": "pending", "message": "MT model loading in progress"}
|
356 |
+
|
357 |
+
# Load the appropriate TTS model for the target language
|
358 |
+
if not load_tts_model(target_code):
|
359 |
+
return {"status": "pending", "message": "TTS model loading in progress"}
|
360 |
+
|
361 |
+
logger.info(f"Languages updated to {source_lang} → {target_lang}")
|
362 |
+
return {"status": "success", "message": f"Languages updated to {source_lang} → {target_lang}"}
|
363 |
+
|
364 |
+
|
365 |
@app.post("/synthesize-speech")
|
366 |
async def synthesize_speech(text: str = Form(...), language: str = Form(...)):
|
367 |
"""Endpoint to synthesize speech from text without translation"""
|
368 |
if language not in LANGUAGE_MAPPING:
|
369 |
raise HTTPException(status_code=400, detail="Invalid language selected")
|
370 |
|
|
|
|
|
371 |
language_code = LANGUAGE_MAPPING[language]
|
372 |
+
request_id = str(uuid.uuid4())
|
373 |
|
374 |
+
# Load the TTS model for the requested language
|
375 |
+
if not load_tts_model(language_code):
|
376 |
return {
|
377 |
"request_id": request_id,
|
378 |
+
"status": "pending",
|
379 |
+
"message": "TTS model loading in progress. Please try again in a moment."
|
|
|
|
|
380 |
}
|
381 |
|
382 |
+
try:
|
383 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
384 |
+
inputs = model_cache["tts"]["tokenizer"](text, return_tensors="pt").to(device)
|
385 |
+
|
386 |
+
with torch.no_grad():
|
387 |
+
output = model_cache["tts"]["model"](**inputs)
|
388 |
+
|
389 |
+
speech = output.waveform.cpu().numpy().squeeze()
|
390 |
+
speech = (speech * 32767).astype(np.int16)
|
391 |
+
sample_rate = model_cache["tts"]["model"].config.sampling_rate
|
392 |
+
|
393 |
+
# Save the audio as a WAV file
|
394 |
+
output_filename = f"{request_id}.wav"
|
395 |
+
output_path = os.path.join(AUDIO_DIR, output_filename)
|
396 |
+
save_pcm_to_wav(speech.tolist(), sample_rate, output_path)
|
397 |
+
logger.info(f"Saved synthesized audio to {output_path}")
|
398 |
+
|
399 |
+
# Generate a URL to the WAV file
|
400 |
+
output_audio_url = f"https://jerich-talklasapp.hf.space/audio_output/{output_filename}"
|
401 |
+
|
402 |
+
return {
|
403 |
+
"request_id": request_id,
|
404 |
+
"status": "completed",
|
405 |
+
"message": "Speech synthesis completed successfully",
|
406 |
+
"text": text,
|
407 |
+
"output_audio": output_audio_url
|
408 |
+
}
|
409 |
|
410 |
+
except Exception as e:
|
411 |
+
logger.error(f"Error during speech synthesis: {str(e)}")
|
412 |
return {
|
413 |
"request_id": request_id,
|
414 |
"status": "failed",
|
415 |
+
"message": f"Speech synthesis failed: {str(e)}",
|
416 |
+
"text": text,
|
417 |
+
"output_audio": None
|
418 |
}
|
419 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
420 |
|
421 |
@app.post("/translate-text")
|
422 |
async def translate_text(text: str = Form(...), source_lang: str = Form(...), target_lang: str = Form(...)):
|
423 |
"""Endpoint to translate text and convert to speech"""
|
|
|
|
|
424 |
if not text:
|
425 |
raise HTTPException(status_code=400, detail="No text provided")
|
426 |
if source_lang not in LANGUAGE_MAPPING or target_lang not in LANGUAGE_MAPPING:
|
|
|
429 |
logger.info(f"Translate-text requested: {text} from {source_lang} to {target_lang}")
|
430 |
request_id = str(uuid.uuid4())
|
431 |
|
432 |
+
# Load the MT model if not already loaded
|
433 |
+
if not load_mt_model():
|
434 |
+
return {
|
435 |
+
"request_id": request_id,
|
436 |
+
"status": "pending",
|
437 |
+
"message": "MT model loading in progress. Please try again in a moment.",
|
438 |
+
"source_text": text,
|
439 |
+
"translated_text": "Translation not available yet",
|
440 |
+
"output_audio": None,
|
441 |
+
"contains_inappropriate_content": False
|
442 |
+
}
|
443 |
+
|
444 |
# Translate the text
|
445 |
source_code = LANGUAGE_MAPPING[source_lang]
|
446 |
target_code = LANGUAGE_MAPPING[target_lang]
|
447 |
translated_text = "Translation not available"
|
448 |
+
contains_inappropriate = False
|
449 |
|
450 |
+
try:
|
451 |
+
source_nllb_code = NLLB_LANGUAGE_CODES[source_code]
|
452 |
+
target_nllb_code = NLLB_LANGUAGE_CODES[target_code]
|
453 |
+
model_cache["mt"]["tokenizer"].src_lang = source_nllb_code
|
454 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
455 |
+
inputs = model_cache["mt"]["tokenizer"](text, return_tensors="pt").to(device)
|
456 |
+
with torch.no_grad():
|
457 |
+
generated_tokens = model_cache["mt"]["model"].generate(
|
458 |
+
**inputs,
|
459 |
+
forced_bos_token_id=model_cache["mt"]["tokenizer"].convert_tokens_to_ids(target_nllb_code),
|
460 |
+
max_length=448
|
461 |
+
)
|
462 |
+
translated_text = model_cache["mt"]["tokenizer"].batch_decode(generated_tokens, skip_special_tokens=True)[0]
|
463 |
+
logger.info(f"Translation completed: {translated_text}")
|
464 |
+
|
465 |
+
# Check for inappropriate content
|
466 |
+
contains_inappropriate = detect_inappropriate_content(translated_text)
|
467 |
+
if contains_inappropriate:
|
468 |
+
logger.warning(f"Inappropriate content detected in translation")
|
469 |
+
|
470 |
+
except Exception as e:
|
471 |
+
logger.error(f"Error during translation: {str(e)}")
|
472 |
+
translated_text = f"Translation failed: {str(e)}"
|
473 |
+
return {
|
474 |
+
"request_id": request_id,
|
475 |
+
"status": "failed",
|
476 |
+
"message": f"Translation failed: {str(e)}",
|
477 |
+
"source_text": text,
|
478 |
+
"translated_text": translated_text,
|
479 |
+
"output_audio": None,
|
480 |
+
"contains_inappropriate_content": contains_inappropriate
|
481 |
+
}
|
482 |
+
|
483 |
+
# Load the TTS model for the target language
|
484 |
+
if not load_tts_model(target_code):
|
485 |
+
return {
|
486 |
+
"request_id": request_id,
|
487 |
+
"status": "partial",
|
488 |
+
"message": "Translation completed, but TTS model is loading. Please try again for audio.",
|
489 |
+
"source_text": text,
|
490 |
+
"translated_text": translated_text,
|
491 |
+
"output_audio": None,
|
492 |
+
"contains_inappropriate_content": contains_inappropriate
|
493 |
+
}
|
494 |
+
|
495 |
# Convert translated text to speech
|
|
|
|
|
496 |
output_audio_url = None
|
497 |
+
try:
|
498 |
+
inputs = model_cache["tts"]["tokenizer"](translated_text, return_tensors="pt").to(device)
|
499 |
+
with torch.no_grad():
|
500 |
+
output = model_cache["tts"]["model"](**inputs)
|
501 |
+
speech = output.waveform.cpu().numpy().squeeze()
|
502 |
+
speech = (speech * 32767).astype(np.int16)
|
503 |
+
sample_rate = model_cache["tts"]["model"].config.sampling_rate
|
504 |
+
|
505 |
# Save the audio as a WAV file
|
506 |
output_filename = f"{request_id}.wav"
|
507 |
output_path = os.path.join(AUDIO_DIR, output_filename)
|
508 |
save_pcm_to_wav(speech.tolist(), sample_rate, output_path)
|
509 |
+
logger.info(f"Saved synthesized audio to {output_path}")
|
510 |
+
|
511 |
# Generate a URL to the WAV file
|
512 |
+
output_audio_url = f"https://jerich-talklasapp.hf.space/audio_output/{output_filename}"
|
513 |
logger.info("TTS conversion completed")
|
514 |
+
except Exception as e:
|
515 |
+
logger.error(f"Error during TTS conversion: {str(e)}")
|
516 |
+
output_audio_url = None
|
517 |
|
518 |
return {
|
519 |
"request_id": request_id,
|
520 |
+
"status": "completed" if output_audio_url else "partial",
|
521 |
+
"message": "Translation and TTS completed" if output_audio_url else
|
522 |
+
"Translation completed but TTS failed",
|
523 |
"source_text": text,
|
524 |
"translated_text": translated_text,
|
525 |
"output_audio": output_audio_url,
|
526 |
+
"contains_inappropriate_content": contains_inappropriate
|
527 |
}
|
528 |
|
529 |
+
|
530 |
@app.post("/translate-audio")
|
531 |
async def translate_audio(audio: UploadFile = File(...), source_lang: str = Form(...), target_lang: str = Form(...)):
|
532 |
"""Endpoint to transcribe, translate, and convert audio to speech"""
|
|
|
|
|
533 |
if not audio:
|
534 |
raise HTTPException(status_code=400, detail="No audio file provided")
|
535 |
if source_lang not in LANGUAGE_MAPPING or target_lang not in LANGUAGE_MAPPING:
|
|
|
538 |
logger.info(f"Translate-audio requested: {audio.filename} from {source_lang} to {target_lang}")
|
539 |
request_id = str(uuid.uuid4())
|
540 |
|
|
|
541 |
source_code = LANGUAGE_MAPPING[source_lang]
|
542 |
+
target_code = LANGUAGE_MAPPING[target_lang]
|
543 |
+
|
544 |
+
# Determine which STT model to use based on source language
|
545 |
+
use_whisper = source_code in ["eng", "tgl"]
|
546 |
|
547 |
+
# Ensure the appropriate STT model is loaded
|
548 |
+
if use_whisper:
|
549 |
+
if not load_whisper_model():
|
|
|
550 |
return {
|
551 |
"request_id": request_id,
|
552 |
+
"status": "pending",
|
553 |
+
"message": "Whisper STT model loading in progress. Please try again in a moment.",
|
554 |
+
"source_text": "Transcription not available yet",
|
555 |
+
"translated_text": "Translation not available yet",
|
556 |
"output_audio": None,
|
557 |
+
"contains_inappropriate_content": False
|
558 |
}
|
559 |
+
else:
|
560 |
+
if not load_mms_stt_model():
|
|
|
|
|
|
|
561 |
return {
|
562 |
"request_id": request_id,
|
563 |
+
"status": "pending",
|
564 |
+
"message": "MMS STT model loading in progress. Please try again in a moment.",
|
565 |
+
"source_text": "Transcription not available yet",
|
566 |
+
"translated_text": "Translation not available yet",
|
567 |
"output_audio": None,
|
568 |
+
"contains_inappropriate_content": False
|
569 |
}
|
|
|
570 |
|
571 |
# Save the uploaded audio to a temporary file
|
572 |
with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as temp_file:
|
|
|
576 |
transcription = "Transcription not available"
|
577 |
translated_text = "Translation not available"
|
578 |
output_audio_url = None
|
579 |
+
contains_inappropriate = False
|
580 |
|
581 |
try:
|
582 |
# Step 1: Load and resample the audio using torchaudio
|
|
|
600 |
"source_text": "No speech detected",
|
601 |
"translated_text": "No translation available",
|
602 |
"output_audio": None,
|
603 |
+
"contains_inappropriate_content": False
|
604 |
}
|
605 |
|
606 |
# Step 3: Transcribe the audio (STT)
|
607 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
608 |
+
logger.info(f"Using device: {device}")
|
609 |
|
610 |
if use_whisper:
|
611 |
+
# Use Whisper for English/Tagalog
|
612 |
+
stt_processor = model_cache["stt_whisper"]["processor"]
|
613 |
+
stt_model = model_cache["stt_whisper"]["model"]
|
614 |
+
|
615 |
+
inputs = stt_processor(waveform.numpy(), sampling_rate=16000, return_tensors="pt").to(device)
|
616 |
+
logger.info("Audio processed with Whisper, generating transcription...")
|
617 |
|
|
|
618 |
with torch.no_grad():
|
619 |
+
generated_ids = stt_model.generate(**inputs, language="en" if source_code == "eng" else "tl")
|
620 |
+
transcription = stt_processor.batch_decode(generated_ids, skip_special_tokens=True)[0]
|
|
|
|
|
|
|
|
|
|
|
|
|
621 |
else:
|
622 |
+
# Use MMS for other Philippine languages
|
623 |
+
stt_processor = model_cache["stt_mms"]["processor"]
|
624 |
+
stt_model = model_cache["stt_mms"]["model"]
|
625 |
+
|
626 |
+
# Set the target language for MMS if supported
|
627 |
+
if source_code in stt_processor.tokenizer.vocab.keys():
|
628 |
+
stt_processor.tokenizer.set_target_lang(source_code)
|
629 |
+
stt_model.load_adapter(source_code)
|
630 |
|
631 |
+
inputs = stt_processor(waveform.numpy(), sampling_rate=16000, return_tensors="pt").to(device)
|
632 |
+
logger.info("Audio processed with MMS, generating transcription...")
|
|
|
633 |
|
|
|
634 |
with torch.no_grad():
|
635 |
+
logits = stt_model(**inputs).logits
|
636 |
predicted_ids = torch.argmax(logits, dim=-1)
|
637 |
+
transcription = stt_processor.batch_decode(predicted_ids)[0]
|
638 |
+
|
639 |
logger.info(f"Transcription completed: {transcription}")
|
640 |
|
641 |
+
# Step 4: Load the MT model if not already loaded
|
642 |
+
if not load_mt_model():
|
643 |
+
return {
|
644 |
+
"request_id": request_id,
|
645 |
+
"status": "partial",
|
646 |
+
"message": "Transcription completed, but MT model is loading. Please try again for translation.",
|
647 |
+
"source_text": transcription,
|
648 |
+
"translated_text": "Translation not available yet",
|
649 |
+
"output_audio": None,
|
650 |
+
"contains_inappropriate_content": False
|
651 |
+
}
|
652 |
+
|
653 |
+
# Step 5: Translate the transcribed text (MT)
|
654 |
+
try:
|
655 |
+
source_nllb_code = NLLB_LANGUAGE_CODES[source_code]
|
656 |
+
target_nllb_code = NLLB_LANGUAGE_CODES[target_code]
|
657 |
+
model_cache["mt"]["tokenizer"].src_lang = source_nllb_code
|
658 |
+
|
659 |
+
inputs = model_cache["mt"]["tokenizer"](transcription, return_tensors="pt").to(device)
|
660 |
+
with torch.no_grad():
|
661 |
+
generated_tokens = model_cache["mt"]["model"].generate(
|
662 |
+
**inputs,
|
663 |
+
forced_bos_token_id=model_cache["mt"]["tokenizer"].convert_tokens_to_ids(target_nllb_code),
|
664 |
+
max_length=448
|
665 |
+
)
|
666 |
+
translated_text = model_cache["mt"]["tokenizer"].batch_decode(generated_tokens, skip_special_tokens=True)[0]
|
667 |
+
logger.info(f"Translation completed: {translated_text}")
|
668 |
+
|
669 |
+
# Check for inappropriate content
|
670 |
+
contains_inappropriate = detect_inappropriate_content(translated_text)
|
671 |
+
if contains_inappropriate:
|
672 |
+
logger.warning(f"Inappropriate content detected in translation")
|
673 |
+
|
674 |
+
except Exception as e:
|
675 |
+
logger.error(f"Error during translation: {str(e)}")
|
676 |
+
translated_text = f"Translation failed: {str(e)}"
|
677 |
+
return {
|
678 |
+
"request_id": request_id,
|
679 |
+
"status": "partial",
|
680 |
+
"message": f"Transcription completed but translation failed: {str(e)}",
|
681 |
+
"source_text": transcription,
|
682 |
+
"translated_text": translated_text,
|
683 |
+
"output_audio": None,
|
684 |
+
"contains_inappropriate_content": False
|
685 |
+
}
|
686 |
|
687 |
+
# Step 6: Load the TTS model for the target language
|
688 |
+
if not load_tts_model(target_code):
|
689 |
+
return {
|
690 |
+
"request_id": request_id,
|
691 |
+
"status": "partial",
|
692 |
+
"message": "Transcription and translation completed, but TTS model is loading.",
|
693 |
+
"source_text": transcription,
|
694 |
+
"translated_text": translated_text,
|
695 |
+
"output_audio": None,
|
696 |
+
"contains_inappropriate_content": contains_inappropriate
|
697 |
+
}
|
698 |
|
699 |
+
# Step 7: Convert translated text to speech (TTS)
|
700 |
+
try:
|
701 |
+
inputs = model_cache["tts"]["tokenizer"](translated_text, return_tensors="pt").to(device)
|
702 |
+
with torch.no_grad():
|
703 |
+
output = model_cache["tts"]["model"](**inputs)
|
704 |
+
speech = output.waveform.cpu().numpy().squeeze()
|
705 |
+
speech = (speech * 32767).astype(np.int16)
|
706 |
+
sample_rate = model_cache["tts"]["model"].config.sampling_rate
|
707 |
# Save the audio as a WAV file
|
708 |
output_filename = f"{request_id}.wav"
|
709 |
output_path = os.path.join(AUDIO_DIR, output_filename)
|
710 |
save_pcm_to_wav(speech.tolist(), sample_rate, output_path)
|
711 |
+
logger.info(f"Saved synthesized audio to {output_path}")
|
712 |
+
|
713 |
# Generate a URL to the WAV file
|
714 |
+
output_audio_url = f"https://jerich-talklasapp.hf.space/audio_output/{output_filename}"
|
715 |
logger.info("TTS conversion completed")
|
716 |
+
except Exception as e:
|
717 |
+
logger.error(f"Error during TTS conversion: {str(e)}")
|
718 |
+
output_audio_url = None
|
719 |
|
720 |
return {
|
721 |
"request_id": request_id,
|
722 |
+
"status": "completed" if output_audio_url else "partial",
|
723 |
+
"message": "Transcription, translation, and TTS completed" if output_audio_url else
|
724 |
+
"Transcription and translation completed but TTS failed",
|
725 |
"source_text": transcription,
|
726 |
"translated_text": translated_text,
|
727 |
"output_audio": output_audio_url,
|
728 |
+
"contains_inappropriate_content": contains_inappropriate
|
729 |
}
|
730 |
except Exception as e:
|
731 |
logger.error(f"Error during processing: {str(e)}")
|
|
|
736 |
"source_text": transcription,
|
737 |
"translated_text": translated_text,
|
738 |
"output_audio": output_audio_url,
|
739 |
+
"contains_inappropriate_content": contains_inappropriate
|
740 |
}
|
741 |
finally:
|
742 |
logger.info(f"Cleaning up temporary file: {temp_path}")
|
743 |
+
try:
|
744 |
+
os.unlink(temp_path)
|
745 |
+
except Exception as e:
|
746 |
+
logger.error(f"Error deleting temporary file: {str(e)}")
|
747 |
+
|
748 |
+
|
749 |
+
# Add a method to check if text contains inappropriate content
|
750 |
+
@app.post("/check-content")
|
751 |
+
async def check_content(text: str = Form(...)):
|
752 |
+
"""
|
753 |
+
Check if the provided text contains inappropriate content
|
754 |
+
"""
|
755 |
+
contains_inappropriate = detect_inappropriate_content(text)
|
756 |
+
return {
|
757 |
+
"text": text,
|
758 |
+
"contains_inappropriate_content": contains_inappropriate
|
759 |
+
}
|
760 |
+
|
761 |
|
762 |
if __name__ == "__main__":
|
763 |
import uvicorn
|