Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,611 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
os.environ["HOME"] = "/root"
|
3 |
+
os.environ["HF_HOME"] = "/tmp/hf_cache"
|
4 |
+
|
5 |
+
import logging
|
6 |
+
import threading
|
7 |
+
import tempfile
|
8 |
+
import uuid
|
9 |
+
import torch
|
10 |
+
import numpy as np
|
11 |
+
import soundfile as sf
|
12 |
+
import torchaudio
|
13 |
+
import wave
|
14 |
+
import time
|
15 |
+
from fastapi import FastAPI, HTTPException, UploadFile, File, Form, BackgroundTasks
|
16 |
+
from fastapi.responses import JSONResponse
|
17 |
+
from fastapi.staticfiles import StaticFiles
|
18 |
+
from typing import Dict, Any, Optional, Tuple
|
19 |
+
from datetime import datetime, timedelta
|
20 |
+
|
21 |
+
# Configure logging
|
22 |
+
logging.basicConfig(level=logging.INFO)
|
23 |
+
logger = logging.getLogger("talklas-api")
|
24 |
+
|
25 |
+
app = FastAPI(title="Talklas API")
|
26 |
+
|
27 |
+
# Mount a directory to serve audio files
|
28 |
+
AUDIO_DIR = "/tmp/audio_output" # Use /tmp for temporary files
|
29 |
+
os.makedirs(AUDIO_DIR, exist_ok=True)
|
30 |
+
app.mount("/audio_output", StaticFiles(directory=AUDIO_DIR), name="audio_output")
|
31 |
+
|
32 |
+
# Global variables to track application state
|
33 |
+
models_loaded = False
|
34 |
+
loading_in_progress = False
|
35 |
+
loading_thread = None
|
36 |
+
model_status = {
|
37 |
+
"stt": "not_loaded",
|
38 |
+
"mt": "not_loaded",
|
39 |
+
"tts": "not_loaded"
|
40 |
+
}
|
41 |
+
error_message = None
|
42 |
+
current_tts_language = "tgl" # Track the current TTS language
|
43 |
+
|
44 |
+
# Model instances
|
45 |
+
stt_processor = None
|
46 |
+
stt_model = None
|
47 |
+
mt_model = None
|
48 |
+
mt_tokenizer = None
|
49 |
+
tts_model = None
|
50 |
+
tts_tokenizer = None
|
51 |
+
|
52 |
+
# Define the valid languages and mappings
|
53 |
+
LANGUAGE_MAPPING = {
|
54 |
+
"English": "eng",
|
55 |
+
"Tagalog": "tgl",
|
56 |
+
"Cebuano": "ceb",
|
57 |
+
"Ilocano": "ilo",
|
58 |
+
"Waray": "war",
|
59 |
+
"Pangasinan": "pag"
|
60 |
+
}
|
61 |
+
|
62 |
+
NLLB_LANGUAGE_CODES = {
|
63 |
+
"eng": "eng_Latn",
|
64 |
+
"tgl": "tgl_Latn",
|
65 |
+
"ceb": "ceb_Latn",
|
66 |
+
"ilo": "ilo_Latn",
|
67 |
+
"war": "war_Latn",
|
68 |
+
"pag": "pag_Latn"
|
69 |
+
}
|
70 |
+
|
71 |
+
# Function to save PCM data as a WAV file
|
72 |
+
def save_pcm_to_wav(pcm_data: list, sample_rate: int, output_path: str):
|
73 |
+
# Convert pcm_data to a NumPy array of 16-bit integers
|
74 |
+
pcm_array = np.array(pcm_data, dtype=np.int16)
|
75 |
+
|
76 |
+
with wave.open(output_path, 'wb') as wav_file:
|
77 |
+
# Set WAV parameters: 1 channel (mono), 2 bytes per sample (16-bit), sample rate
|
78 |
+
wav_file.setnchannels(1)
|
79 |
+
wav_file.setsampwidth(2) # 16-bit audio
|
80 |
+
wav_file.setframerate(sample_rate)
|
81 |
+
# Write the 16-bit PCM data as bytes (little-endian)
|
82 |
+
wav_file.writeframes(pcm_array.tobytes())
|
83 |
+
|
84 |
+
# Function to detect speech using an energy-based approach
|
85 |
+
def detect_speech(waveform: torch.Tensor, sample_rate: int, threshold: float = 0.01, min_speech_duration: float = 0.5) -> bool:
|
86 |
+
"""
|
87 |
+
Detects if the audio contains speech using an energy-based approach.
|
88 |
+
Returns True if speech is detected, False otherwise.
|
89 |
+
"""
|
90 |
+
# Convert waveform to numpy array
|
91 |
+
waveform_np = waveform.numpy()
|
92 |
+
if waveform_np.ndim > 1:
|
93 |
+
waveform_np = waveform_np.mean(axis=0) # Convert stereo to mono
|
94 |
+
|
95 |
+
# Compute RMS energy
|
96 |
+
rms = np.sqrt(np.mean(waveform_np**2))
|
97 |
+
logger.info(f"RMS energy: {rms}")
|
98 |
+
|
99 |
+
# Check if RMS energy exceeds the threshold
|
100 |
+
if rms < threshold:
|
101 |
+
logger.info("No speech detected: RMS energy below threshold")
|
102 |
+
return False
|
103 |
+
|
104 |
+
# Optionally, check for minimum speech duration (requires more sophisticated VAD)
|
105 |
+
# For now, we assume if RMS is above threshold, there is speech
|
106 |
+
return True
|
107 |
+
|
108 |
+
# Function to clean up old audio files
|
109 |
+
def cleanup_old_audio_files():
|
110 |
+
logger.info("Starting cleanup of old audio files...")
|
111 |
+
expiration_time = datetime.now() - timedelta(minutes=10) # Files older than 10 minutes
|
112 |
+
for filename in os.listdir(AUDIO_DIR):
|
113 |
+
file_path = os.path.join(AUDIO_DIR, filename)
|
114 |
+
if os.path.isfile(file_path):
|
115 |
+
file_mtime = datetime.fromtimestamp(os.path.getmtime(file_path))
|
116 |
+
if file_mtime < expiration_time:
|
117 |
+
try:
|
118 |
+
os.unlink(file_path)
|
119 |
+
logger.info(f"Deleted old audio file: {file_path}")
|
120 |
+
except Exception as e:
|
121 |
+
logger.error(f"Error deleting file {file_path}: {str(e)}")
|
122 |
+
|
123 |
+
# Background task to periodically clean up audio files
|
124 |
+
def schedule_cleanup():
|
125 |
+
while True:
|
126 |
+
cleanup_old_audio_files()
|
127 |
+
time.sleep(300) # Run every 5 minutes (300 seconds)
|
128 |
+
|
129 |
+
# Function to load models in background
|
130 |
+
def load_models_task():
|
131 |
+
global models_loaded, loading_in_progress, model_status, error_message
|
132 |
+
global stt_processor, stt_model, mt_model, mt_tokenizer, tts_model, tts_tokenizer
|
133 |
+
|
134 |
+
try:
|
135 |
+
loading_in_progress = True
|
136 |
+
|
137 |
+
# Load STT model (MMS with fallback to Whisper)
|
138 |
+
logger.info("Starting to load STT model...")
|
139 |
+
from transformers import AutoProcessor, AutoModelForCTC, WhisperProcessor, WhisperForConditionalGeneration
|
140 |
+
|
141 |
+
try:
|
142 |
+
logger.info("Loading MMS STT model...")
|
143 |
+
model_status["stt"] = "loading"
|
144 |
+
stt_processor = AutoProcessor.from_pretrained("facebook/mms-1b-all")
|
145 |
+
stt_model = AutoModelForCTC.from_pretrained("facebook/mms-1b-all")
|
146 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
147 |
+
stt_model.to(device)
|
148 |
+
logger.info("MMS STT model loaded successfully")
|
149 |
+
model_status["stt"] = "loaded_mms"
|
150 |
+
except Exception as mms_error:
|
151 |
+
logger.error(f"Failed to load MMS STT model: {str(mms_error)}")
|
152 |
+
logger.info("Falling back to Whisper STT model...")
|
153 |
+
try:
|
154 |
+
stt_processor = WhisperProcessor.from_pretrained("openai/whisper-tiny")
|
155 |
+
stt_model = WhisperForConditionalGeneration.from_pretrained("openai/whisper-tiny")
|
156 |
+
stt_model.to(device)
|
157 |
+
logger.info("Whisper STT model loaded successfully as fallback")
|
158 |
+
model_status["stt"] = "loaded_whisper"
|
159 |
+
except Exception as whisper_error:
|
160 |
+
logger.error(f"Failed to load Whisper STT model: {str(whisper_error)}")
|
161 |
+
model_status["stt"] = "failed"
|
162 |
+
error_message = f"STT model loading failed: MMS error: {str(mms_error)}, Whisper error: {str(whisper_error)}"
|
163 |
+
return
|
164 |
+
|
165 |
+
# Load MT model
|
166 |
+
logger.info("Starting to load MT model...")
|
167 |
+
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer
|
168 |
+
|
169 |
+
try:
|
170 |
+
logger.info("Loading NLLB-200-distilled-600M model...")
|
171 |
+
model_status["mt"] = "loading"
|
172 |
+
mt_model = AutoModelForSeq2SeqLM.from_pretrained("facebook/nllb-200-distilled-600M")
|
173 |
+
mt_tokenizer = AutoTokenizer.from_pretrained("facebook/nllb-200-distilled-600M")
|
174 |
+
mt_model.to(device)
|
175 |
+
logger.info("MT model loaded successfully")
|
176 |
+
model_status["mt"] = "loaded"
|
177 |
+
except Exception as e:
|
178 |
+
logger.error(f"Failed to load MT model: {str(e)}")
|
179 |
+
model_status["mt"] = "failed"
|
180 |
+
error_message = f"MT model loading failed: {str(e)}"
|
181 |
+
return
|
182 |
+
|
183 |
+
# Load TTS model (default to Tagalog, will be updated dynamically)
|
184 |
+
logger.info("Starting to load TTS model...")
|
185 |
+
from transformers import VitsModel, AutoTokenizer
|
186 |
+
|
187 |
+
try:
|
188 |
+
logger.info("Loading MMS-TTS model for Tagalog...")
|
189 |
+
model_status["tts"] = "loading"
|
190 |
+
tts_model = VitsModel.from_pretrained("facebook/mms-tts-tgl")
|
191 |
+
tts_tokenizer = AutoTokenizer.from_pretrained("facebook/mms-tts-tgl")
|
192 |
+
tts_model.to(device)
|
193 |
+
logger.info("TTS model loaded successfully")
|
194 |
+
model_status["tts"] = "loaded"
|
195 |
+
except Exception as e:
|
196 |
+
logger.error(f"Failed to load TTS model for Tagalog: {str(e)}")
|
197 |
+
# Fallback to English TTS if the target language fails
|
198 |
+
try:
|
199 |
+
logger.info("Falling back to MMS-TTS English model...")
|
200 |
+
tts_model = VitsModel.from_pretrained("facebook/mms-tts-eng")
|
201 |
+
tts_tokenizer = AutoTokenizer.from_pretrained("facebook/mms-tts-eng")
|
202 |
+
tts_model.to(device)
|
203 |
+
logger.info("Fallback TTS model loaded successfully")
|
204 |
+
model_status["tts"] = "loaded (fallback)"
|
205 |
+
current_tts_language = "eng"
|
206 |
+
except Exception as e2:
|
207 |
+
logger.error(f"Failed to load fallback TTS model: {str(e2)}")
|
208 |
+
model_status["tts"] = "failed"
|
209 |
+
error_message = f"TTS model loading failed: {str(e)} (fallback also failed: {str(e2)})"
|
210 |
+
return
|
211 |
+
|
212 |
+
models_loaded = True
|
213 |
+
logger.info("Model loading completed successfully")
|
214 |
+
|
215 |
+
except Exception as e:
|
216 |
+
error_message = str(e)
|
217 |
+
logger.error(f"Error in model loading task: {str(e)}")
|
218 |
+
finally:
|
219 |
+
loading_in_progress = False
|
220 |
+
|
221 |
+
# Start loading models in background
|
222 |
+
def start_model_loading():
|
223 |
+
global loading_thread, loading_in_progress
|
224 |
+
if not loading_in_progress and not models_loaded:
|
225 |
+
loading_in_progress = True
|
226 |
+
loading_thread = threading.Thread(target=load_models_task)
|
227 |
+
loading_thread.daemon = True
|
228 |
+
loading_thread.start()
|
229 |
+
|
230 |
+
# Start the background cleanup task
|
231 |
+
def start_cleanup_task():
|
232 |
+
cleanup_thread = threading.Thread(target=schedule_cleanup)
|
233 |
+
cleanup_thread.daemon = True
|
234 |
+
cleanup_thread.start()
|
235 |
+
|
236 |
+
# Start the background processes when the app starts
|
237 |
+
@app.on_event("startup")
|
238 |
+
async def startup_event():
|
239 |
+
logger.info("Application starting up...")
|
240 |
+
start_model_loading()
|
241 |
+
start_cleanup_task()
|
242 |
+
|
243 |
+
@app.get("/")
|
244 |
+
async def root():
|
245 |
+
"""Root endpoint for default health check"""
|
246 |
+
logger.info("Root endpoint requested")
|
247 |
+
return {"status": "healthy"}
|
248 |
+
|
249 |
+
@app.get("/health")
|
250 |
+
async def health_check():
|
251 |
+
"""Health check endpoint that always returns successfully"""
|
252 |
+
global models_loaded, loading_in_progress, model_status, error_message
|
253 |
+
logger.info("Health check requested")
|
254 |
+
return {
|
255 |
+
"status": "healthy",
|
256 |
+
"models_loaded": models_loaded,
|
257 |
+
"loading_in_progress": loading_in_progress,
|
258 |
+
"model_status": model_status,
|
259 |
+
"error": error_message
|
260 |
+
}
|
261 |
+
|
262 |
+
@app.post("/update-languages")
|
263 |
+
async def update_languages(source_lang: str = Form(...), target_lang: str = Form(...)):
|
264 |
+
global stt_processor, stt_model, tts_model, tts_tokenizer, current_tts_language
|
265 |
+
|
266 |
+
if source_lang not in LANGUAGE_MAPPING or target_lang not in LANGUAGE_MAPPING:
|
267 |
+
raise HTTPException(status_code=400, detail="Invalid language selected")
|
268 |
+
|
269 |
+
source_code = LANGUAGE_MAPPING[source_lang]
|
270 |
+
target_code = LANGUAGE_MAPPING[target_lang]
|
271 |
+
|
272 |
+
# Update the STT model based on the source language (MMS or Whisper)
|
273 |
+
try:
|
274 |
+
logger.info("Updating STT model for source language...")
|
275 |
+
from transformers import AutoProcessor, AutoModelForCTC, WhisperProcessor, WhisperForConditionalGeneration
|
276 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
277 |
+
|
278 |
+
try:
|
279 |
+
logger.info(f"Loading MMS STT model for {source_code}...")
|
280 |
+
stt_processor = AutoProcessor.from_pretrained("facebook/mms-1b-all")
|
281 |
+
stt_model = AutoModelForCTC.from_pretrained("facebook/mms-1b-all")
|
282 |
+
stt_model.to(device)
|
283 |
+
# Set the target language for MMS
|
284 |
+
if source_code in stt_processor.tokenizer.vocab.keys():
|
285 |
+
stt_processor.tokenizer.set_target_lang(source_code)
|
286 |
+
stt_model.load_adapter(source_code)
|
287 |
+
logger.info(f"MMS STT model updated to {source_code}")
|
288 |
+
model_status["stt"] = "loaded_mms"
|
289 |
+
else:
|
290 |
+
logger.warning(f"Language {source_code} not supported by MMS, using default")
|
291 |
+
model_status["stt"] = "loaded_mms_default"
|
292 |
+
except Exception as mms_error:
|
293 |
+
logger.error(f"Failed to load MMS STT model for {source_code}: {str(mms_error)}")
|
294 |
+
logger.info("Falling back to Whisper STT model...")
|
295 |
+
try:
|
296 |
+
stt_processor = WhisperProcessor.from_pretrained("openai/whisper-tiny")
|
297 |
+
stt_model = WhisperForConditionalGeneration.from_pretrained("openai/whisper-tiny")
|
298 |
+
stt_model.to(device)
|
299 |
+
logger.info("Whisper STT model loaded successfully as fallback")
|
300 |
+
model_status["stt"] = "loaded_whisper"
|
301 |
+
except Exception as whisper_error:
|
302 |
+
logger.error(f"Failed to load Whisper STT model: {str(whisper_error)}")
|
303 |
+
model_status["stt"] = "failed"
|
304 |
+
error_message = f"STT model update failed: MMS error: {str(mms_error)}, Whisper error: {str(whisper_error)}"
|
305 |
+
return {"status": "failed", "error": error_message}
|
306 |
+
except Exception as e:
|
307 |
+
logger.error(f"Error updating STT model: {str(e)}")
|
308 |
+
model_status["stt"] = "failed"
|
309 |
+
error_message = f"STT model update failed: {str(e)}"
|
310 |
+
return {"status": "failed", "error": error_message}
|
311 |
+
|
312 |
+
# Update the TTS model based on the target language
|
313 |
+
try:
|
314 |
+
logger.info(f"Loading MMS-TTS model for {target_code}...")
|
315 |
+
from transformers import VitsModel, AutoTokenizer
|
316 |
+
tts_model = VitsModel.from_pretrained(f"facebook/mms-tts-{target_code}")
|
317 |
+
tts_tokenizer = AutoTokenizer.from_pretrained(f"facebook/mms-tts-{target_code}")
|
318 |
+
tts_model.to(device)
|
319 |
+
current_tts_language = target_code
|
320 |
+
logger.info(f"TTS model updated to {target_code}")
|
321 |
+
model_status["tts"] = "loaded"
|
322 |
+
except Exception as e:
|
323 |
+
logger.error(f"Failed to load TTS model for {target_code}: {str(e)}")
|
324 |
+
try:
|
325 |
+
logger.info("Falling back to MMS-TTS English model...")
|
326 |
+
tts_model = VitsModel.from_pretrained("facebook/mms-tts-eng")
|
327 |
+
tts_tokenizer = AutoTokenizer.from_pretrained("facebook/mms-tts-eng")
|
328 |
+
tts_model.to(device)
|
329 |
+
current_tts_language = "eng"
|
330 |
+
logger.info("Fallback TTS model loaded successfully")
|
331 |
+
model_status["tts"] = "loaded (fallback)"
|
332 |
+
except Exception as e2:
|
333 |
+
logger.error(f"Failed to load fallback TTS model: {str(e2)}")
|
334 |
+
model_status["tts"] = "failed"
|
335 |
+
error_message = f"TTS model loading failed: {str(e)} (fallback also failed: {str(e2)})"
|
336 |
+
return {"status": "failed", "error": error_message}
|
337 |
+
|
338 |
+
logger.info(f"Updating languages: {source_lang} → {target_lang}")
|
339 |
+
return {"status": f"Languages updated to {source_lang} → {target_lang}"}
|
340 |
+
|
341 |
+
@app.post("/translate-text")
|
342 |
+
async def translate_text(text: str = Form(...), source_lang: str = Form(...), target_lang: str = Form(...)):
|
343 |
+
"""Endpoint to translate text and convert to speech"""
|
344 |
+
global mt_model, mt_tokenizer, tts_model, tts_tokenizer, current_tts_language
|
345 |
+
|
346 |
+
if not text:
|
347 |
+
raise HTTPException(status_code=400, detail="No text provided")
|
348 |
+
if source_lang not in LANGUAGE_MAPPING or target_lang not in LANGUAGE_MAPPING:
|
349 |
+
raise HTTPException(status_code=400, detail="Invalid language selected")
|
350 |
+
|
351 |
+
logger.info(f"Translate-text requested: {text} from {source_lang} to {target_lang}")
|
352 |
+
request_id = str(uuid.uuid4())
|
353 |
+
|
354 |
+
# Translate the text
|
355 |
+
source_code = LANGUAGE_MAPPING[source_lang]
|
356 |
+
target_code = LANGUAGE_MAPPING[target_lang]
|
357 |
+
translated_text = "Translation not available"
|
358 |
+
|
359 |
+
if model_status["mt"] == "loaded" and mt_model is not None and mt_tokenizer is not None:
|
360 |
+
try:
|
361 |
+
source_nllb_code = NLLB_LANGUAGE_CODES[source_code]
|
362 |
+
target_nllb_code = NLLB_LANGUAGE_CODES[target_code]
|
363 |
+
mt_tokenizer.src_lang = source_nllb_code
|
364 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
365 |
+
inputs = mt_tokenizer(text, return_tensors="pt").to(device)
|
366 |
+
with torch.no_grad():
|
367 |
+
generated_tokens = mt_model.generate(
|
368 |
+
**inputs,
|
369 |
+
forced_bos_token_id=mt_tokenizer.convert_tokens_to_ids(target_nllb_code),
|
370 |
+
max_length=448
|
371 |
+
)
|
372 |
+
translated_text = mt_tokenizer.batch_decode(generated_tokens, skip_special_tokens=True)[0]
|
373 |
+
logger.info(f"Translation completed: {translated_text}")
|
374 |
+
except Exception as e:
|
375 |
+
logger.error(f"Error during translation: {str(e)}")
|
376 |
+
translated_text = f"Translation failed: {str(e)}"
|
377 |
+
else:
|
378 |
+
logger.warning("MT model not loaded, skipping translation")
|
379 |
+
|
380 |
+
# Update TTS model if the target language doesn't match the current TTS language
|
381 |
+
if current_tts_language != target_code:
|
382 |
+
try:
|
383 |
+
logger.info(f"Updating TTS model for {target_code}...")
|
384 |
+
from transformers import VitsModel, AutoTokenizer
|
385 |
+
tts_model = VitsModel.from_pretrained(f"facebook/mms-tts-{target_code}")
|
386 |
+
tts_tokenizer = AutoTokenizer.from_pretrained(f"facebook/mms-tts-{target_code}")
|
387 |
+
tts_model.to(device)
|
388 |
+
current_tts_language = target_code
|
389 |
+
logger.info(f"TTS model updated to {target_code}")
|
390 |
+
model_status["tts"] = "loaded"
|
391 |
+
except Exception as e:
|
392 |
+
logger.error(f"Failed to load TTS model for {target_code}: {str(e)}")
|
393 |
+
try:
|
394 |
+
logger.info("Falling back to MMS-TTS English model...")
|
395 |
+
tts_model = VitsModel.from_pretrained("facebook/mms-tts-eng")
|
396 |
+
tts_tokenizer = AutoTokenizer.from_pretrained("facebook/mms-tts-eng")
|
397 |
+
tts_model.to(device)
|
398 |
+
current_tts_language = "eng"
|
399 |
+
logger.info("Fallback TTS model loaded successfully")
|
400 |
+
model_status["tts"] = "loaded (fallback)"
|
401 |
+
except Exception as e2:
|
402 |
+
logger.error(f"Failed to load fallback TTS model: {str(e2)}")
|
403 |
+
model_status["tts"] = "failed"
|
404 |
+
|
405 |
+
# Convert translated text to speech
|
406 |
+
output_audio_url = None
|
407 |
+
if model_status["tts"].startswith("loaded") and tts_model is not None and tts_tokenizer is not None:
|
408 |
+
try:
|
409 |
+
inputs = tts_tokenizer(translated_text, return_tensors="pt").to(device)
|
410 |
+
with torch.no_grad():
|
411 |
+
output = tts_model(**inputs)
|
412 |
+
speech = output.waveform.cpu().numpy().squeeze()
|
413 |
+
speech = (speech * 32767).astype(np.int16)
|
414 |
+
sample_rate = tts_model.config.sampling_rate
|
415 |
+
|
416 |
+
# Save the audio as a WAV file
|
417 |
+
output_filename = f"{request_id}.wav"
|
418 |
+
output_path = os.path.join(AUDIO_DIR, output_filename)
|
419 |
+
save_pcm_to_wav(speech.tolist(), sample_rate, output_path)
|
420 |
+
logger.info(f"Saved synthesized audio to {output_path}")
|
421 |
+
|
422 |
+
# Generate a URL to the WAV file
|
423 |
+
output_audio_url = f"https://jerich-talklasapp.hf.space/audio_output/{output_filename}"
|
424 |
+
logger.info("TTS conversion completed")
|
425 |
+
except Exception as e:
|
426 |
+
logger.error(f"Error during TTS conversion: {str(e)}")
|
427 |
+
output_audio_url = None
|
428 |
+
|
429 |
+
return {
|
430 |
+
"request_id": request_id,
|
431 |
+
"status": "completed",
|
432 |
+
"message": "Translation and TTS completed (or partially completed).",
|
433 |
+
"source_text": text,
|
434 |
+
"translated_text": translated_text,
|
435 |
+
"output_audio": output_audio_url
|
436 |
+
}
|
437 |
+
|
438 |
+
@app.post("/translate-audio")
|
439 |
+
async def translate_audio(audio: UploadFile = File(...), source_lang: str = Form(...), target_lang: str = Form(...)):
|
440 |
+
"""Endpoint to transcribe, translate, and convert audio to speech"""
|
441 |
+
global stt_processor, stt_model, mt_model, mt_tokenizer, tts_model, tts_tokenizer, current_tts_language
|
442 |
+
|
443 |
+
if not audio:
|
444 |
+
raise HTTPException(status_code=400, detail="No audio file provided")
|
445 |
+
if source_lang not in LANGUAGE_MAPPING or target_lang not in LANGUAGE_MAPPING:
|
446 |
+
raise HTTPException(status_code=400, detail="Invalid language selected")
|
447 |
+
|
448 |
+
logger.info(f"Translate-audio requested: {audio.filename} from {source_lang} to {target_lang}")
|
449 |
+
request_id = str(uuid.uuid4())
|
450 |
+
|
451 |
+
# Check if STT model is loaded
|
452 |
+
if model_status["stt"] not in ["loaded_mms", "loaded_mms_default", "loaded_whisper"] or stt_processor is None or stt_model is None:
|
453 |
+
logger.warning("STT model not loaded, returning placeholder response")
|
454 |
+
return {
|
455 |
+
"request_id": request_id,
|
456 |
+
"status": "processing",
|
457 |
+
"message": "STT model not loaded yet. Please try again later.",
|
458 |
+
"source_text": "Transcription not available",
|
459 |
+
"translated_text": "Translation not available",
|
460 |
+
"output_audio": None
|
461 |
+
}
|
462 |
+
|
463 |
+
# Save the uploaded audio to a temporary file
|
464 |
+
with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as temp_file:
|
465 |
+
temp_file.write(await audio.read())
|
466 |
+
temp_path = temp_file.name
|
467 |
+
|
468 |
+
transcription = "Transcription not available"
|
469 |
+
translated_text = "Translation not available"
|
470 |
+
output_audio_url = None
|
471 |
+
|
472 |
+
try:
|
473 |
+
# Step 1: Load and resample the audio using torchaudio
|
474 |
+
logger.info(f"Reading audio file: {temp_path}")
|
475 |
+
waveform, sample_rate = torchaudio.load(temp_path)
|
476 |
+
logger.info(f"Audio loaded: sample_rate={sample_rate}, waveform_shape={waveform.shape}")
|
477 |
+
|
478 |
+
# Resample to 16 kHz if needed (required by Whisper and MMS models)
|
479 |
+
if sample_rate != 16000:
|
480 |
+
logger.info(f"Resampling audio from {sample_rate} Hz to 16000 Hz")
|
481 |
+
resampler = torchaudio.transforms.Resample(sample_rate, 16000)
|
482 |
+
waveform = resampler(waveform)
|
483 |
+
sample_rate = 16000
|
484 |
+
|
485 |
+
# Step 2: Detect speech
|
486 |
+
if not detect_speech(waveform, sample_rate):
|
487 |
+
return {
|
488 |
+
"request_id": request_id,
|
489 |
+
"status": "failed",
|
490 |
+
"message": "No speech detected in the audio.",
|
491 |
+
"source_text": "No speech detected",
|
492 |
+
"translated_text": "No translation available",
|
493 |
+
"output_audio": None
|
494 |
+
}
|
495 |
+
|
496 |
+
# Step 3: Transcribe the audio (STT)
|
497 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
498 |
+
logger.info(f"Using device: {device}")
|
499 |
+
inputs = stt_processor(waveform.numpy(), sampling_rate=16000, return_tensors="pt").to(device)
|
500 |
+
logger.info("Audio processed, generating transcription...")
|
501 |
+
|
502 |
+
with torch.no_grad():
|
503 |
+
if model_status["stt"] == "loaded_whisper":
|
504 |
+
# Whisper model
|
505 |
+
generated_ids = stt_model.generate(**inputs, language="en")
|
506 |
+
transcription = stt_processor.batch_decode(generated_ids, skip_special_tokens=True)[0]
|
507 |
+
else:
|
508 |
+
# MMS model
|
509 |
+
logits = stt_model(**inputs).logits
|
510 |
+
predicted_ids = torch.argmax(logits, dim=-1)
|
511 |
+
transcription = stt_processor.batch_decode(predicted_ids)[0]
|
512 |
+
logger.info(f"Transcription completed: {transcription}")
|
513 |
+
|
514 |
+
# Step 4: Translate the transcribed text (MT)
|
515 |
+
source_code = LANGUAGE_MAPPING[source_lang]
|
516 |
+
target_code = LANGUAGE_MAPPING[target_lang]
|
517 |
+
|
518 |
+
if model_status["mt"] == "loaded" and mt_model is not None and mt_tokenizer is not None:
|
519 |
+
try:
|
520 |
+
source_nllb_code = NLLB_LANGUAGE_CODES[source_code]
|
521 |
+
target_nllb_code = NLLB_LANGUAGE_CODES[target_code]
|
522 |
+
mt_tokenizer.src_lang = source_nllb_code
|
523 |
+
inputs = mt_tokenizer(transcription, return_tensors="pt").to(device)
|
524 |
+
with torch.no_grad():
|
525 |
+
generated_tokens = mt_model.generate(
|
526 |
+
**inputs,
|
527 |
+
forced_bos_token_id=mt_tokenizer.convert_tokens_to_ids(target_nllb_code),
|
528 |
+
max_length=448
|
529 |
+
)
|
530 |
+
translated_text = mt_tokenizer.batch_decode(generated_tokens, skip_special_tokens=True)[0]
|
531 |
+
logger.info(f"Translation completed: {translated_text}")
|
532 |
+
except Exception as e:
|
533 |
+
logger.error(f"Error during translation: {str(e)}")
|
534 |
+
translated_text = f"Translation failed: {str(e)}"
|
535 |
+
else:
|
536 |
+
logger.warning("MT model not loaded, skipping translation")
|
537 |
+
|
538 |
+
# Step 5: Update TTS model if the target language doesn't match the current TTS language
|
539 |
+
if current_tts_language != target_code:
|
540 |
+
try:
|
541 |
+
logger.info(f"Updating TTS model for {target_code}...")
|
542 |
+
from transformers import VitsModel, AutoTokenizer
|
543 |
+
tts_model = VitsModel.from_pretrained(f"facebook/mms-tts-{target_code}")
|
544 |
+
tts_tokenizer = AutoTokenizer.from_pretrained(f"facebook/mms-tts-{target_code}")
|
545 |
+
tts_model.to(device)
|
546 |
+
current_tts_language = target_code
|
547 |
+
logger.info(f"TTS model updated to {target_code}")
|
548 |
+
model_status["tts"] = "loaded"
|
549 |
+
except Exception as e:
|
550 |
+
logger.error(f"Failed to load TTS model for {target_code}: {str(e)}")
|
551 |
+
try:
|
552 |
+
logger.info("Falling back to MMS-TTS English model...")
|
553 |
+
tts_model = VitsModel.from_pretrained("facebook/mms-tts-eng")
|
554 |
+
tts_tokenizer = AutoTokenizer.from_pretrained("facebook/mms-tts-eng")
|
555 |
+
tts_model.to(device)
|
556 |
+
current_tts_language = "eng"
|
557 |
+
logger.info("Fallback TTS model loaded successfully")
|
558 |
+
model_status["tts"] = "loaded (fallback)"
|
559 |
+
except Exception as e2:
|
560 |
+
logger.error(f"Failed to load fallback TTS model: {str(e2)}")
|
561 |
+
model_status["tts"] = "failed"
|
562 |
+
|
563 |
+
# Step 6: Convert translated text to speech (TTS)
|
564 |
+
if model_status["tts"].startswith("loaded") and tts_model is not None and tts_tokenizer is not None:
|
565 |
+
try:
|
566 |
+
inputs = tts_tokenizer(translated_text, return_tensors="pt").to(device)
|
567 |
+
with torch.no_grad():
|
568 |
+
output = tts_model(**inputs)
|
569 |
+
speech = output.waveform.cpu().numpy().squeeze()
|
570 |
+
speech = (speech * 32767).astype(np.int16)
|
571 |
+
sample_rate = tts_model.config.sampling_rate
|
572 |
+
|
573 |
+
# Save the audio as a WAV file
|
574 |
+
output_filename = f"{request_id}.wav"
|
575 |
+
output_path = os.path.join(AUDIO_DIR, output_filename)
|
576 |
+
save_pcm_to_wav(speech.tolist(), sample_rate, output_path)
|
577 |
+
logger.info(f"Saved synthesized audio to {output_path}")
|
578 |
+
|
579 |
+
# Generate a URL to the WAV file
|
580 |
+
output_audio_url = f"https://jerich-talklasapp.hf.space/audio_output/{output_filename}"
|
581 |
+
logger.info("TTS conversion completed")
|
582 |
+
except Exception as e:
|
583 |
+
logger.error(f"Error during TTS conversion: {str(e)}")
|
584 |
+
output_audio_url = None
|
585 |
+
|
586 |
+
return {
|
587 |
+
"request_id": request_id,
|
588 |
+
"status": "completed",
|
589 |
+
"message": "Transcription, translation, and TTS completed (or partially completed).",
|
590 |
+
"source_text": transcription,
|
591 |
+
"translated_text": translated_text,
|
592 |
+
"output_audio": output_audio_url
|
593 |
+
}
|
594 |
+
except Exception as e:
|
595 |
+
logger.error(f"Error during processing: {str(e)}")
|
596 |
+
return {
|
597 |
+
"request_id": request_id,
|
598 |
+
"status": "failed",
|
599 |
+
"message": f"Processing failed: {str(e)}",
|
600 |
+
"source_text": transcription,
|
601 |
+
"translated_text": translated_text,
|
602 |
+
"output_audio": output_audio_url
|
603 |
+
}
|
604 |
+
finally:
|
605 |
+
logger.info(f"Cleaning up temporary file: {temp_path}")
|
606 |
+
os.unlink(temp_path)
|
607 |
+
|
608 |
+
if __name__ == "__main__":
|
609 |
+
import uvicorn
|
610 |
+
logger.info("Starting Uvicorn server...")
|
611 |
+
uvicorn.run(app, host="0.0.0.0", port=8000, workers=1)
|