TalklasApp2 / app.py
Jerich's picture
Fix Whisper language handling for Tagalog in translate-audio endpoint
dec41a9 verified
raw
history blame
25.3 kB
import os
os.environ["HOME"] = "/root"
os.environ["HF_HOME"] = "/tmp/hf_cache"
import logging
import threading
import tempfile
import uuid
import torch
import numpy as np
import soundfile as sf
import torchaudio
import wave
import time
import re
from fastapi import FastAPI, HTTPException, UploadFile, File, Form, BackgroundTasks
from fastapi.responses import JSONResponse
from fastapi.staticfiles import StaticFiles
from typing import Dict, Any, Optional, Tuple, List
from(datetime import datetime, timedelta)
# Configure logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger("talklas-api")
app = FastAPI(title="Talklas API")
# Mount a directory to serve audio files
AUDIO_DIR = "/tmp/audio_output" # Use /tmp for temporary files
os.makedirs(AUDIO_DIR, exist_ok=True)
app.mount("/audio_output", StaticFiles(directory=AUDIO_DIR), name="audio_output")
# Global variables to track application state
models_loaded = False
loading_in_progress = False
loading_thread = None
model_status = {
"stt": "not_loaded",
"mt": "not_loaded",
"tts": "not_loaded"
}
error_message = None
current_tts_language = "tgl" # Track the current TTS language
# Model instances
stt_processor_whisper = None
stt_model_whisper = None
stt_processor_mms = None
stt_model_mms = None
mt_model = None
mt_tokenizer = None
tts_model = None
tts_tokenizer = None
# Define the valid languages and mappings
LANGUAGE_MAPPING = {
"English": "eng",
"Tagalog": "tgl",
"Cebuano": "ceb",
"Ilocano": "ilo",
"Waray": "war",
"Pangasinan": "pag"
}
# Mapping for Whisper language names
WHISPER_LANGUAGE_MAPPING = {
"eng": "english",
"tgl": "tagalog"
}
NLLB_LANGUAGE_CODES = {
"eng": "eng_Latn",
"tgl": "tgl_Latn",
"ceb": "ceb_Latn",
"ilo": "ilo_Latn",
"war": "war_Latn",
"pag": "pag_Latn"
}
# List of inappropriate words/phrases for content filtering
INAPPROPRIATE_WORDS = [
# English inappropriate words
"fuck", "shit", "bitch", "ass", "damn", "hell", "bastard", "cunt", "son of a bitch", "dick", "pussy", "motherfucker",
# Philippine languages
"agka baboy", "puta", "putang ina", "gago", "tanga", "hayop", "ulol", "lintik", "animal ka",
"paki", "pakyu", "yawa", "bungol", "gingan", "yawa ka", "peste", "irig",
"pakit", "ayat", "pua", "kayat mo ti agsardeng", "hinampak", "iring ka"
]
# Function to check for inappropriate content
def check_inappropriate_content(text: str) -> bool:
"""
Check if the text contains inappropriate content.
Returns True if inappropriate content is detected, False otherwise.
"""
text_lower = text.lower()
for word in INAPPROPRIATE_WORDS:
pattern = r'\b' + re.escape(word) + r'\b'
if re.search(pattern, text_lower):
logger.warning(f"Inappropriate content detected: {word}")
return True
return False
# Function to save PCM data as a WAV file
def save_pcm_to_wav(pcm_data: list, sample_rate: int, output_path: str):
pcm_array = np.array(pcm_data, dtype=np.int16)
with wave.open(output_path, 'wb') as wav_file:
wav_file.setnchannels(1)
wav_file.setsampwidth(2)
wav_file.setframerate(sample_rate)
wav_file.writeframes(pcm_array.tobytes())
# Function to detect speech using an energy-based approach
def detect_speech(waveform: torch.Tensor, sample_rate: int, threshold: float = 0.01, min_speech_duration: float = 0.5) -> bool:
waveform_np = waveform.numpy()
if waveform_np.ndim > 1:
waveform_np = waveform_np.mean(axis=0)
rms = np.sqrt(np.mean(waveform_np**2))
logger.info(f"RMS energy: {rms}")
if rms < threshold:
logger.info("No speech detected: RMS energy below threshold")
return False
return True
# Function to clean up old audio files
def cleanup_old_audio_files():
logger.info("Starting cleanup of old audio files...")
expiration_time = datetime.now() - timedelta(minutes=10)
for filename in os.listdir(AUDIO_DIR):
file_path = os.path.join(AUDIO_DIR, filename)
if os.path.isfile(file_path):
file_mtime = datetime.fromtimestamp(os.path.getmtime(file_path))
if file_mtime < expiration_time:
try:
os.unlink(file_path)
logger.info(f"Deleted old audio file: {file_path}")
except Exception as e:
logger.error(f"Error deleting file {file_path}: {str(e)}")
# Background task to periodically clean up audio files
def schedule_cleanup():
while True:
cleanup_old_audio_files()
time.sleep(300)
# Function to load models in background
def load_models_task():
global models_loaded, loading_in_progress, model_status, error_message
global stt_processor_whisper, stt_model_whisper, stt_processor_mms, stt_model_mms
global mt_model, mt_tokenizer, tts_model, tts_tokenizer
try:
loading_in_progress = True
# Load STT models
logger.info("Starting to load STT models...")
from transformers import AutoProcessor, AutoModelForCTC, WhisperProcessor, WhisperForConditionalGeneration
try:
logger.info("Loading Whisper STT model...")
model_status["stt"] = "loading"
stt_processor_whisper = WhisperProcessor.from_pretrained("openai/whisper-tiny")
stt_model_whisper = WhisperForConditionalGeneration.from_pretrained("openai/whisper-tiny")
device = "cuda" if torch.cuda.is_available() else "cpu"
stt_model_whisper.to(device)
logger.info("Whisper STT model loaded successfully")
model_status["stt"] = "loaded_whisper"
except Exception as e:
logger.error(f"Failed to load Whisper STT model: {str(e)}")
model_status["stt"] = "failed"
error_message = f"Whisper STT model loading failed: {str(e)}"
return
try:
logger.info("Loading MMS STT model...")
stt_processor_mms = AutoProcessor.from_pretrained("facebook/mms-1b-all")
stt_model_mms = AutoModelForCTC.from_pretrained("facebook/mms-1b-all")
stt_model_mms.to(device)
logger.info("MMS STT model loaded successfully")
model_status["stt"] = "loaded_both" if model_status["stt"] == "loaded_whisper" else "loaded_mms"
except Exception as e:
logger.error(f"Failed to load MMS STT model: {str(e)}")
if model_status["stt"] != "loaded_whisper":
model_status["stt"] = "failed"
error_message = f"MMS STT model loading failed: {str(e)}"
return
# Load MT model
logger.info("Starting to load MT model...")
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer
try:
logger.info("Loading NLLB-200-distilled-600M model...")
model_status["mt"] = "loading"
mt_model = AutoModelForSeq2SeqLM.from_pretrained("facebook/nllb-200-distilled-600M")
mt_tokenizer = AutoTokenizer.from_pretrained("facebook/nllb-200-distilled-600M")
mt_model.to(device)
logger.info("MT model loaded successfully")
model_status["mt"] = "loaded"
except Exception as e:
logger.error(f"Failed to load MT model: {str(e)}")
model_status["mt"] = "failed"
error_message = f"MT model loading failed: {str(e)}"
return
# Load TTS model (default to Tagalog)
logger.info("Starting to load TTS model...")
from transformers import VitsModel, AutoTokenizer
try:
logger.info("Loading MMS-TTS model for Tagalog...")
model_status["tts"] = "loading"
tts_model = VitsModel.from_pretrained("facebook/mms-tts-tgl")
tts_tokenizer = AutoTokenizer.from_pretrained("facebook/mms-tts-tgl")
tts_model.to(device)
logger.info("TTS model loaded successfully")
model_status["tts"] = "loaded"
except Exception as e:
logger.error(f"Failed to load TTS model for Tagalog: {str(e)}")
try:
logger.info("Falling back to MMS-TTS English model...")
tts_model = VitsModel.from_pretrained("facebook/mms-tts-eng")
tts_tokenizer = AutoTokenizer.from_pretrained("facebook/mms-tts-eng")
tts_model.to(device)
logger.info("Fallback TTS model loaded successfully")
model_status["tts"] = "loaded (fallback)"
current_tts_language = "eng"
except Exception as e2:
logger.error(f"Failed to load fallback TTS model: {str(e2)}")
model_status["tts"] = "failed"
error_message = f"TTS model loading failed: {str(e)} (fallback also failed: {str(e2)})"
return
models_loaded = True
logger.info("Model loading completed successfully")
except Exception as e:
error_message = str(e)
logger.error(f"Error in model loading task: {str(e)}")
finally:
loading_in_progress = False
# Start loading models in background
def start_model_loading():
global loading_thread, loading_in_progress
if not loading_in_progress and not models_loaded:
loading_in_progress = True
loading_thread = threading.Thread(target=load_models_task)
loading_thread.daemon = True
loading_thread.start()
# Start the background cleanup task
def start_cleanup_task():
cleanup_thread = threading.Thread(target=schedule_cleanup)
cleanup_thread.daemon = True
cleanup_thread.start()
# Function to load or update TTS model for a specific language
def load_tts_model_for_language(target_code: str) -> bool:
global tts_model, tts_tokenizer, current_tts_language, model_status
if target_code not in LANGUAGE_MAPPING.values():
logger.error(f"Invalid language code: {target_code}")
return False
if current_tts_language == target_code and model_status["tts"].startswith("loaded"):
logger.info(f"TTS model for {target_code} is already loaded.")
return True
device = "cuda" if torch.cuda.is_available() else "cpu"
try:
logger.info(f"Loading MMS-TTS model for {target_code}...")
from transformers import VitsModel, AutoTokenizer
tts_model = VitsModel.from_pretrained(f"facebook/mms-tts-{target_code}")
tts_tokenizer = AutoTokenizer.from_pretrained(f"facebook/mms-tts-{target_code}")
tts_model.to(device)
current_tts_language = target_code
logger.info(f"TTS model updated to {target_code}")
model_status["tts"] = "loaded"
return True
except Exception as e:
logger.error(f"Failed to load TTS model for {target_code}: {str(e)}")
try:
logger.info("Falling back to MMS-TTS English model...")
tts_model = VitsModel.from_pretrained("facebook/mms-tts-eng")
tts_tokenizer = AutoTokenizer.from_pretrained("facebook/mms-tts-eng")
tts_model.to(device)
current_tts_language = "eng"
logger.info("Fallback TTS model loaded successfully")
model_status["tts"] = "loaded (fallback)"
return True
except Exception as e2:
logger.error(f"Failed to load fallback TTS model: {str(e2)}")
model_status["tts"] = "failed"
return False
# Function to synthesize speech from text
def synthesize_speech(text: str, target_code: str) -> Tuple[Optional[str], Optional[str]]:
global tts_model, tts_tokenizer
request_id = str(uuid.uuid4())
output_path = os.path.join(AUDIO_DIR, f"{request_id}.wav")
if not load_tts_model_for_language(target_code):
return None, "Failed to load TTS model for the target language"
device = "cuda" if torch.cuda.is_available() else "cpu"
try:
inputs = tts_tokenizer(text, return_tensors="pt").toagli(device)
with torch.no_grad():
output = tts_model(**inputs)
speech = output.waveform.cpu().numpy().squeeze()
speech = (speech * 32767).astype(np.int16)
sample_rate = tts_model.config.sampling_rate
save_pcm_to_wav(speech.tolist(), sample_rate, output_path)
logger.info(f"Saved synthesized audio to {output_path}")
return output_path, None
except Exception as e:
error_msg = f"Error during TTS conversion: {str(e)}"
logger.error(error_msg)
return None, error_msg
# Start the background processes when the app starts
@app.on_event("startup")
async def startup_event():
logger.info("Application starting up...")
start_model_loading()
start_cleanup_task()
@app.get("/")
async def root():
logger.info("Root endpoint requested")
return {"status": "healthy"}
@app.get("/health")
async def health_check():
logger.info("Health check requested")
return {
"status": "healthy",
"models_loaded": models_loaded,
"loading_in_progress": loading_in_progress,
"model_status": model_status,
"error": error_message
}
@app.post("/translate-text")
async def translate_text(text: str = Form(...), source_lang: str = Form(...), target_lang: str = Form(...)):
global mt_model, mt_tokenizer, tts_model, tts_tokenizer, current_tts_language
if not text:
raise HTTPException(status_code=400, detail="No text provided")
if source_lang not in LANGUAGE_MAPPING or target_lang not in LANGUAGE_MAPPING:
raise HTTPException(status_code=400, detail="Invalid language selected")
logger.info(f"Translate-text requested: {text} from {source_lang} to {target_lang}")
request_id = str(uuid.uuid4())
source_code = LANGUAGE_MAPPING[source_lang]
target_code = LANGUAGE_MAPPING[target_lang]
translated_text = "Translation not available"
if model_status["mt"] == "loaded" and mt_model is not None and mt_tokenizer is not None:
try:
source_nllb_code = NLLB_LANGUAGE_CODES[source_code]
target_nllb_code = NLLB_LANGUAGE_CODES[target_code]
mt_tokenizer.src_lang = source_nllb_code
device = "cuda" if torch.cuda.is_available() else "cpu"
inputs = mt_tokenizer(text, return_tensors="pt").to(device)
with torch.no_grad():
generated_tokens = mt_model.generate(
**inputs,
forced_bos_token_id=mt_tokenizer.convert_tokens_to_ids(target_nllb_code),
max_length=448
)
translated_text = mt_tokenizer.batch_decode(generated_tokens, skip_special_tokens=True)[0]
logger.info(f"Translation completed: {translated_text}")
except Exception as e:
logger.error(f"Error during translation: {str(e)}")
translated_text = f"Translation failed: {str(e)}"
else:
logger.warning("MT model not loaded, skipping translation")
is_inappropriate = check_inappropriate_content(text) or check_inappropriate_content(translated_text)
if is_inappropriate:
logger.warning("Inappropriate content detected in translation request")
output_audio_url = None
if model_status["tts"].startswith("loaded"):
if load_tts_model_for_language(target_code):
try:
output_path, error = synthesize_speech(translated_text, target_code)
if output_path:
output_filename = os.path.basename(output_path)
output_audio_url = f"https://jerich-talklasapp2.hf.space/audio_output/{output_filename}"
logger.info("TTS conversion completed")
except Exception as e:
logger.error(f"Error during TTS conversion: {str(e)}")
return {
"request_id": request_id,
"status": "completed",
"message": "Translation and TTS completed (or partially completed).",
"source_text": text,
"translated_text": translated_text,
"output_audio": output_audio_url,
"is_inappropriate": is_inappropriate
}
@app.post("/translate-audio")
async def translate_audio(audio: UploadFile = File(...), source_lang: str = Form(...), target_lang: str = Form(...)):
global stt_processor_whisper, stt_model_whisper, stt_processor_mms, stt_model_mms
global mt_model, mt_tokenizer, tts_model, tts_tokenizer, current_tts_language
if not audio:
raise HTTPException(status_code=400, detail="No audio file provided")
if source_lang not in LANGUAGE_MAPPING or target_lang not in LANGUAGE_MAPPING:
raise HTTPException(status_code=400, detail="Invalid language selected")
logger.info(f"Translate-audio requested: {audio.filename} from {source_lang} to {target_lang}")
request_id = str(uuid.uuid4())
source_code = LANGUAGE_MAPPING[source_lang]
use_whisper = source_code in ["eng", "tgl"]
# Check if appropriate STT model is loaded
if use_whisper and (stt_processor_whisper is None or stt_model_whisper is None):
logger.warning("Whisper STT model not loaded, returning placeholder response")
return {
"request_id": request_id,
"status": "processing",
"message": "Whisper STT model not loaded yet. Please try again later.",
"source_text": "Transcription not available",
"translated_text": "Translation not available",
"output_audio": None,
"is_inappropriate": False
}
elif not use_whisper and (stt_processor_mms is None or stt_model_mms is None):
logger.warning("MMS STT model not loaded, returning placeholder response")
return {
"request_id": request_id,
"status": "processing",
"message": "MMS STT model not loaded yet. Please try again later.",
"source_text": "Transcription not available",
"translated_text": "Translation not available",
"output_audio": None,
"is_inappropriate": False
}
with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as temp_file:
temp_file.write(await audio.read())
temp_path = temp_file.name
transcription = "Transcription not available"
translated_text = "Translation not available"
output_audio_url = None
is_inappropriate = False
try:
logger.info(f"Reading audio file: {temp_path}")
waveform, sample_rate = torchaudio.load(temp_path)
logger.info(f"Audio loaded: sample_rate={sample_rate}, waveform_shape={waveform.shape}")
if sample_rate != 16000:
logger.info(f"Resampling audio from {sample_rate} Hz to 16000 Hz")
resampler = torchaudio.transforms.Resample(sample_rate, 16000)
waveform = resampler(waveform)
sample_rate = 16000
if not detect_speech(waveform, sample_rate):
return {
"request_id": request_id,
"status": "failed",
"message": "No speech detected in the audio.",
"source_text": "No speech detected",
"translated_text": "No translation available",
"output_audio": None,
"is_inappropriate": False
}
device = "cuda" if torch.cuda.is_available() else "cpu"
logger.info(f"Using device: {device}")
if use_whisper:
logger.info("Using Whisper model for transcription")
whisper_lang = WHISPER_LANGUAGE_MAPPING.get(source_code, "english") # Default to English if not mapped
inputs = stt_processor_whisper(waveform.numpy(), sampling_rate=16000, return_tensors="pt").to(device)
with torch.no_grad():
generated_ids = stt_model_whisper.generate(**inputs, language=whisper_lang)
transcription = stt_processor_whisper.batch_decode(generated_ids, skip_special_tokens=True)[0]
else:
logger.info("Using MMS model for transcription")
inputs = stt_processor_mms(waveform.numpy(), sampling_rate=16000, return_tensors="pt").to(device)
with torch.no_grad():
logits = stt_model_mms(**inputs).logits
predicted_ids = torch.argmax(logits, dim=-1)
transcription = stt_processor_mms.batch_decode(predicted_ids)[0]
logger.info(f"Transcription completed: {transcription}")
target_code = LANGUAGE_MAPPING[target_lang]
if model_status["mt"] == "loaded" and mt_model is not None and mt_tokenizer is not None:
try:
source_nllb_code = NLLB_LANGUAGE_CODES[source_code]
target_nllb_code = NLLB_LANGUAGE_CODES[target_code]
mt_tokenizer.src_lang = source_nllb_code
inputs = mt_tokenizer(transcription, return_tensors="pt").to(device)
with torch.no_grad():
generated_tokens = mt_model.generate(
**inputs,
forced_bos_token_id=mt_tokenizer.convert_tokens_to_ids(target_nllb_code),
max_length=448
)
translated_text = mt_tokenizer.batch_decode(generated_tokens, skip_special_tokens=True)[0]
logger.info(f"Translation completed: {translated_text}")
except Exception as e:
logger.error(f"Error during translation: {str(e)}")
translated_text = f"Translation failed: {str(e)}"
else:
logger.warning("MT model not loaded, skipping translation")
is_inappropriate = check_inappropriate_content(transcription) or check_inappropriate_content(translated_text)
if is_inappropriate:
logger.warning("Inappropriate content detected in audio transcription or translation")
if load_tts_model_for_language(target_code):
try:
output_path, error = synthesize_speech(translated_text, target_code)
if output_path:
output_filename = os.path.basename(output_path)
output_audio_url = f"https://jerich-talklasapp2.hf.space/audio_output/{output_filename}"
logger.info("TTS conversion completed")
except Exception as e:
logger.error(f"Error during TTS conversion: {str(e)}")
return {
"request_id": request_id,
"status": "completed",
"message": "Transcription, translation, and TTS completed (or partially completed).",
"source_text": transcription,
"translated_text": translated_text,
"output_audio": output_audio_url,
"is_inappropriate": is_inappropriate
}
except Exception as e:
logger.error(f"Error during processing: {str(e)}")
return {
"request_id": request_id,
"status": "failed",
"message": f"Processing failed: {str(e)}",
"source_text": transcription,
"translated_text": translated_text,
"output_audio": output_audio_url,
"is_inappropriate": is_inappropriate
}
finally:
logger.info(f"Cleaning up temporary file: {temp_path}")
os.unlink(temp_path)
@app.post("/text-to-speech")
async def text_to_speech(text: str = Form(...), target_lang: str = Form(...)):
if not text:
raise HTTPException(status_code=400, detail="No text provided")
if target_lang not in LANGUAGE_MAPPING:
raise HTTPException(status_code=400, detail="Invalid language selected")
logger.info(f"Text-to-speech requested for text in {target_lang}")
request_id = str(uuid.uuid4())
target_code = LANGUAGE_MAPPING[target_lang]
is_inappropriate = check_inappropriate_content(text)
if is_inappropriate:
logger.warning("Inappropriate content detected in text-to-speech request")
output_audio_url = None
if model_status["tts"].startswith("loaded") or load_tts_model_for_language(target_code):
try:
output_path, error = synthesize_speech(text, target_code)
if output_path:
output_filename = os.path.basename(output_path)
output_audio_url = f"https://jerich-talklasapp2.hf.space/audio_output/{output_filename}"
logger.info("TTS conversion completed")
else:
logger.error(f"TTS conversion failed: {error}")
except Exception as e:
logger.error(f"Error during TTS conversion: {str(e)}")
else:
logger.warning("TTS model not loaded and could not be loaded")
return {
"request_id": request_id,
"status": "completed" if output_audio_url else "failed",
"message": "TTS completed" if output_audio_url else "TTS failed",
"text": text,
"output_audio": output_audio_url,
"is_inappropriate": is_inappropriate
}
if __name__ == "__main__":
import uvicorn
logger.info("Starting Uvicorn server...")
uvicorn.run(app, host="0.0.0.0", port=8000, workers=1)