Spaces:
Paused
Paused
Add MT with NLLB-200-distilled-600M and TTS with MMS-TTS
Browse files
app.py
CHANGED
@@ -12,7 +12,7 @@ import soundfile as sf
|
|
12 |
import librosa
|
13 |
from fastapi import FastAPI, HTTPException, UploadFile, File, Form
|
14 |
from fastapi.responses import JSONResponse
|
15 |
-
from typing import Dict, Any, Optional
|
16 |
|
17 |
# Configure logging
|
18 |
logging.basicConfig(level=logging.INFO)
|
@@ -31,11 +31,15 @@ model_status = {
|
|
31 |
}
|
32 |
error_message = None
|
33 |
|
34 |
-
#
|
35 |
stt_processor = None
|
36 |
stt_model = None
|
|
|
|
|
|
|
|
|
37 |
|
38 |
-
# Define the valid languages
|
39 |
LANGUAGE_MAPPING = {
|
40 |
"English": "eng",
|
41 |
"Tagalog": "tgl",
|
@@ -45,9 +49,19 @@ LANGUAGE_MAPPING = {
|
|
45 |
"Pangasinan": "pag"
|
46 |
}
|
47 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
48 |
# Function to load models in background
|
49 |
def load_models_task():
|
50 |
-
global models_loaded, loading_in_progress, model_status, error_message
|
|
|
51 |
|
52 |
try:
|
53 |
loading_in_progress = True
|
@@ -71,10 +85,51 @@ def load_models_task():
|
|
71 |
error_message = f"STT model loading failed: {str(e)}"
|
72 |
return
|
73 |
|
74 |
-
#
|
75 |
-
|
76 |
-
|
77 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
78 |
|
79 |
models_loaded = True
|
80 |
logger.info("Model loading completed successfully")
|
@@ -121,14 +176,46 @@ async def health_check():
|
|
121 |
|
122 |
@app.post("/update-languages")
|
123 |
async def update_languages(source_lang: str = Form(...), target_lang: str = Form(...)):
|
|
|
|
|
124 |
if source_lang not in LANGUAGE_MAPPING or target_lang not in LANGUAGE_MAPPING:
|
125 |
raise HTTPException(status_code=400, detail="Invalid language selected")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
126 |
logger.info(f"Updating languages: {source_lang} → {target_lang}")
|
127 |
return {"status": f"Languages updated to {source_lang} → {target_lang}"}
|
128 |
|
129 |
@app.post("/translate-text")
|
130 |
async def translate_text(text: str = Form(...), source_lang: str = Form(...), target_lang: str = Form(...)):
|
131 |
-
"""Endpoint
|
|
|
|
|
132 |
if not text:
|
133 |
raise HTTPException(status_code=400, detail="No text provided")
|
134 |
if source_lang not in LANGUAGE_MAPPING or target_lang not in LANGUAGE_MAPPING:
|
@@ -136,19 +223,61 @@ async def translate_text(text: str = Form(...), source_lang: str = Form(...), ta
|
|
136 |
|
137 |
logger.info(f"Translate-text requested: {text} from {source_lang} to {target_lang}")
|
138 |
request_id = str(uuid.uuid4())
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
139 |
return {
|
140 |
"request_id": request_id,
|
141 |
-
"status": "
|
142 |
-
"message": "Translation
|
143 |
"source_text": text,
|
144 |
-
"translated_text":
|
145 |
-
"output_audio":
|
146 |
}
|
147 |
|
148 |
@app.post("/translate-audio")
|
149 |
async def translate_audio(audio: UploadFile = File(...), source_lang: str = Form(...), target_lang: str = Form(...)):
|
150 |
-
"""Endpoint to transcribe audio
|
151 |
-
global stt_processor, stt_model
|
152 |
|
153 |
if not audio:
|
154 |
raise HTTPException(status_code=400, detail="No audio file provided")
|
@@ -184,7 +313,7 @@ async def translate_audio(audio: UploadFile = File(...), source_lang: str = Form
|
|
184 |
logger.info(f"Resampling audio from {sample_rate} Hz to 16000 Hz")
|
185 |
waveform = librosa.resample(waveform, orig_sr=sample_rate, target_sr=16000)
|
186 |
|
187 |
-
# Process the audio with Whisper
|
188 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
189 |
logger.info(f"Using device: {device}")
|
190 |
inputs = stt_processor(waveform, sampling_rate=16000, return_tensors="pt").to(device)
|
@@ -192,31 +321,38 @@ async def translate_audio(audio: UploadFile = File(...), source_lang: str = Form
|
|
192 |
with torch.no_grad():
|
193 |
generated_ids = stt_model.generate(**inputs)
|
194 |
transcription = stt_processor.batch_decode(generated_ids, skip_special_tokens=True)[0]
|
195 |
-
|
196 |
logger.info(f"Transcription completed: {transcription}")
|
197 |
-
return {
|
198 |
-
"request_id": request_id,
|
199 |
-
"status": "completed",
|
200 |
-
"message": "Transcription completed successfully. Translation and TTS not implemented yet.",
|
201 |
-
"source_text": transcription,
|
202 |
-
"translated_text": "Translation not available",
|
203 |
-
"output_audio": None
|
204 |
-
}
|
205 |
-
except Exception as e:
|
206 |
-
logger.error(f"Error during transcription: {str(e)}")
|
207 |
-
return {
|
208 |
-
"request_id": request_id,
|
209 |
-
"status": "failed",
|
210 |
-
"message": f"Transcription failed: {str(e)}",
|
211 |
-
"source_text": "Transcription not available",
|
212 |
-
"translated_text": "Translation not available",
|
213 |
-
"output_audio": None
|
214 |
-
}
|
215 |
-
finally:
|
216 |
-
logger.info(f"Cleaning up temporary file: {temp_path}")
|
217 |
-
os.unlink(temp_path)
|
218 |
|
219 |
-
|
220 |
-
|
221 |
-
|
222 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
12 |
import librosa
|
13 |
from fastapi import FastAPI, HTTPException, UploadFile, File, Form
|
14 |
from fastapi.responses import JSONResponse
|
15 |
+
from typing import Dict, Any, Optional, Tuple
|
16 |
|
17 |
# Configure logging
|
18 |
logging.basicConfig(level=logging.INFO)
|
|
|
31 |
}
|
32 |
error_message = None
|
33 |
|
34 |
+
# Model instances
|
35 |
stt_processor = None
|
36 |
stt_model = None
|
37 |
+
mt_model = None
|
38 |
+
mt_tokenizer = None
|
39 |
+
tts_model = None
|
40 |
+
tts_tokenizer = None
|
41 |
|
42 |
+
# Define the valid languages and mappings
|
43 |
LANGUAGE_MAPPING = {
|
44 |
"English": "eng",
|
45 |
"Tagalog": "tgl",
|
|
|
49 |
"Pangasinan": "pag"
|
50 |
}
|
51 |
|
52 |
+
NLLB_LANGUAGE_CODES = {
|
53 |
+
"eng": "eng_Latn",
|
54 |
+
"tgl": "tgl_Latn",
|
55 |
+
"ceb": "ceb_Latn",
|
56 |
+
"ilo": "ilo_Latn",
|
57 |
+
"war": "war_Latn",
|
58 |
+
"pag": "pag_Latn"
|
59 |
+
}
|
60 |
+
|
61 |
# Function to load models in background
|
62 |
def load_models_task():
|
63 |
+
global models_loaded, loading_in_progress, model_status, error_message
|
64 |
+
global stt_processor, stt_model, mt_model, mt_tokenizer, tts_model, tts_tokenizer
|
65 |
|
66 |
try:
|
67 |
loading_in_progress = True
|
|
|
85 |
error_message = f"STT model loading failed: {str(e)}"
|
86 |
return
|
87 |
|
88 |
+
# Load MT model
|
89 |
+
logger.info("Starting to load MT model...")
|
90 |
+
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer
|
91 |
+
|
92 |
+
try:
|
93 |
+
logger.info("Loading NLLB-200-distilled-600M model...")
|
94 |
+
model_status["mt"] = "loading"
|
95 |
+
mt_model = AutoModelForSeq2SeqLM.from_pretrained("facebook/nllb-200-distilled-600M")
|
96 |
+
mt_tokenizer = AutoTokenizer.from_pretrained("facebook/nllb-200-distilled-600M", clean_up_tokenization_spaces=True)
|
97 |
+
mt_model.to(device)
|
98 |
+
logger.info("MT model loaded successfully")
|
99 |
+
model_status["mt"] = "loaded"
|
100 |
+
except Exception as e:
|
101 |
+
logger.error(f"Failed to load MT model: {str(e)}")
|
102 |
+
model_status["mt"] = "failed"
|
103 |
+
error_message = f"MT model loading failed: {str(e)}"
|
104 |
+
return
|
105 |
+
|
106 |
+
# Load TTS model (default to Tagalog, will be updated by /update-languages)
|
107 |
+
logger.info("Starting to load TTS model...")
|
108 |
+
from transformers import VitsModel, AutoTokenizer
|
109 |
+
|
110 |
+
try:
|
111 |
+
logger.info("Loading MMS-TTS model for Tagalog...")
|
112 |
+
model_status["tts"] = "loading"
|
113 |
+
tts_model = VitsModel.from_pretrained("facebook/mms-tts-tgl")
|
114 |
+
tts_tokenizer = AutoTokenizer.from_pretrained("facebook/mms-tts-tgl", clean_up_tokenization_spaces=True)
|
115 |
+
tts_model.to(device)
|
116 |
+
logger.info("TTS model loaded successfully")
|
117 |
+
model_status["tts"] = "loaded"
|
118 |
+
except Exception as e:
|
119 |
+
logger.error(f"Failed to load TTS model: {str(e)}")
|
120 |
+
# Fallback to English TTS if the target language fails
|
121 |
+
try:
|
122 |
+
logger.info("Falling back to MMS-TTS English model...")
|
123 |
+
tts_model = VitsModel.from_pretrained("facebook/mms-tts-eng")
|
124 |
+
tts_tokenizer = AutoTokenizer.from_pretrained("facebook/mms-tts-eng", clean_up_tokenization_spaces=True)
|
125 |
+
tts_model.to(device)
|
126 |
+
logger.info("Fallback TTS model loaded successfully")
|
127 |
+
model_status["tts"] = "loaded (fallback)"
|
128 |
+
except Exception as e2:
|
129 |
+
logger.error(f"Failed to load fallback TTS model: {str(e2)}")
|
130 |
+
model_status["tts"] = "failed"
|
131 |
+
error_message = f"TTS model loading failed: {str(e)} (fallback also failed: {str(e2)})"
|
132 |
+
return
|
133 |
|
134 |
models_loaded = True
|
135 |
logger.info("Model loading completed successfully")
|
|
|
176 |
|
177 |
@app.post("/update-languages")
|
178 |
async def update_languages(source_lang: str = Form(...), target_lang: str = Form(...)):
|
179 |
+
global tts_model, tts_tokenizer
|
180 |
+
|
181 |
if source_lang not in LANGUAGE_MAPPING or target_lang not in LANGUAGE_MAPPING:
|
182 |
raise HTTPException(status_code=400, detail="Invalid language selected")
|
183 |
+
|
184 |
+
source_code = LANGUAGE_MAPPING[source_lang]
|
185 |
+
target_code = LANGUAGE_MAPPING[target_lang]
|
186 |
+
|
187 |
+
# Update the TTS model based on the target language
|
188 |
+
try:
|
189 |
+
logger.info(f"Loading MMS-TTS model for {target_code}...")
|
190 |
+
from transformers import VitsModel, AutoTokenizer
|
191 |
+
tts_model = VitsModel.from_pretrained(f"facebook/mms-tts-{target_code}")
|
192 |
+
tts_tokenizer = AutoTokenizer.from_pretrained(f"facebook/mms-tts-{target_code}", clean_up_tokenization_spaces=True)
|
193 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
194 |
+
tts_model.to(device)
|
195 |
+
logger.info(f"TTS model updated to {target_code}")
|
196 |
+
model_status["tts"] = "loaded"
|
197 |
+
except Exception as e:
|
198 |
+
logger.error(f"Failed to load TTS model for {target_code}: {str(e)}")
|
199 |
+
try:
|
200 |
+
logger.info("Falling back to MMS-TTS English model...")
|
201 |
+
tts_model = VitsModel.from_pretrained("facebook/mms-tts-eng")
|
202 |
+
tts_tokenizer = AutoTokenizer.from_pretrained("facebook/mms-tts-eng", clean_up_tokenization_spaces=True)
|
203 |
+
tts_model.to(device)
|
204 |
+
logger.info("Fallback TTS model loaded successfully")
|
205 |
+
model_status["tts"] = "loaded (fallback)"
|
206 |
+
except Exception as e2:
|
207 |
+
logger.error(f"Failed to load fallback TTS model: {str(e2)}")
|
208 |
+
model_status["tts"] = "failed"
|
209 |
+
error_message = f"TTS model loading failed: {str(e)} (fallback also failed: {str(e2)})"
|
210 |
+
|
211 |
logger.info(f"Updating languages: {source_lang} → {target_lang}")
|
212 |
return {"status": f"Languages updated to {source_lang} → {target_lang}"}
|
213 |
|
214 |
@app.post("/translate-text")
|
215 |
async def translate_text(text: str = Form(...), source_lang: str = Form(...), target_lang: str = Form(...)):
|
216 |
+
"""Endpoint to translate text and convert to speech"""
|
217 |
+
global mt_model, mt_tokenizer, tts_model, tts_tokenizer
|
218 |
+
|
219 |
if not text:
|
220 |
raise HTTPException(status_code=400, detail="No text provided")
|
221 |
if source_lang not in LANGUAGE_MAPPING or target_lang not in LANGUAGE_MAPPING:
|
|
|
223 |
|
224 |
logger.info(f"Translate-text requested: {text} from {source_lang} to {target_lang}")
|
225 |
request_id = str(uuid.uuid4())
|
226 |
+
|
227 |
+
# Translate the text
|
228 |
+
source_code = LANGUAGE_MAPPING[source_lang]
|
229 |
+
target_code = LANGUAGE_MAPPING[target_lang]
|
230 |
+
translated_text = "Translation not available"
|
231 |
+
|
232 |
+
if model_status["mt"] == "loaded" and mt_model is not None and mt_tokenizer is not None:
|
233 |
+
try:
|
234 |
+
source_nllb_code = NLLB_LANGUAGE_CODES[source_code]
|
235 |
+
target_nllb_code = NLLB_LANGUAGE_CODES[target_code]
|
236 |
+
mt_tokenizer.src_lang = source_nllb_code
|
237 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
238 |
+
inputs = mt_tokenizer(text, return_tensors="pt", clean_up_tokenization_spaces=True).to(device)
|
239 |
+
with torch.no_grad():
|
240 |
+
generated_tokens = mt_model.generate(
|
241 |
+
**inputs,
|
242 |
+
forced_bos_token_id=mt_tokenizer.convert_tokens_to_ids(target_nllb_code),
|
243 |
+
max_length=448
|
244 |
+
)
|
245 |
+
translated_text = mt_tokenizer.batch_decode(generated_tokens, skip_special_tokens=True)[0]
|
246 |
+
logger.info(f"Translation completed: {translated_text}")
|
247 |
+
except Exception as e:
|
248 |
+
logger.error(f"Error during translation: {str(e)}")
|
249 |
+
translated_text = f"Translation failed: {str(e)}"
|
250 |
+
else:
|
251 |
+
logger.warning("MT model not loaded, skipping translation")
|
252 |
+
|
253 |
+
# Convert translated text to speech
|
254 |
+
output_audio = None
|
255 |
+
if model_status["tts"].startswith("loaded") and tts_model is not None and tts_tokenizer is not None:
|
256 |
+
try:
|
257 |
+
inputs = tts_tokenizer(translated_text, return_tensors="pt", clean_up_tokenization_spaces=True).to(device)
|
258 |
+
with torch.no_grad():
|
259 |
+
output = tts_model(**inputs)
|
260 |
+
speech = output.waveform.cpu().numpy().squeeze()
|
261 |
+
speech = (speech * 32767).astype(np.int16)
|
262 |
+
output_audio = (tts_model.config.sampling_rate, speech.tolist())
|
263 |
+
logger.info("TTS conversion completed")
|
264 |
+
except Exception as e:
|
265 |
+
logger.error(f"Error during TTS conversion: {str(e)}")
|
266 |
+
output_audio = None
|
267 |
+
|
268 |
return {
|
269 |
"request_id": request_id,
|
270 |
+
"status": "completed",
|
271 |
+
"message": "Translation and TTS completed (or partially completed).",
|
272 |
"source_text": text,
|
273 |
+
"translated_text": translated_text,
|
274 |
+
"output_audio": output_audio
|
275 |
}
|
276 |
|
277 |
@app.post("/translate-audio")
|
278 |
async def translate_audio(audio: UploadFile = File(...), source_lang: str = Form(...), target_lang: str = Form(...)):
|
279 |
+
"""Endpoint to transcribe, translate, and convert audio to speech"""
|
280 |
+
global stt_processor, stt_model, mt_model, mt_tokenizer, tts_model, tts_tokenizer
|
281 |
|
282 |
if not audio:
|
283 |
raise HTTPException(status_code=400, detail="No audio file provided")
|
|
|
313 |
logger.info(f"Resampling audio from {sample_rate} Hz to 16000 Hz")
|
314 |
waveform = librosa.resample(waveform, orig_sr=sample_rate, target_sr=16000)
|
315 |
|
316 |
+
# Process the audio with Whisper (STT)
|
317 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
318 |
logger.info(f"Using device: {device}")
|
319 |
inputs = stt_processor(waveform, sampling_rate=16000, return_tensors="pt").to(device)
|
|
|
321 |
with torch.no_grad():
|
322 |
generated_ids = stt_model.generate(**inputs)
|
323 |
transcription = stt_processor.batch_decode(generated_ids, skip_special_tokens=True)[0]
|
|
|
324 |
logger.info(f"Transcription completed: {transcription}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
325 |
|
326 |
+
# Translate the transcribed text
|
327 |
+
source_code = LANGUAGE_MAPPING[source_lang]
|
328 |
+
target_code = LANGUAGE_MAPPING[target_lang]
|
329 |
+
translated_text = "Translation not available"
|
330 |
+
|
331 |
+
if model_status["mt"] == "loaded" and mt_model is not None and mt_tokenizer is not None:
|
332 |
+
try:
|
333 |
+
source_nllb_code = NLLB_LANGUAGE_CODES[source_code]
|
334 |
+
target_nllb_code = NLLB_LANGUAGE_CODES[target_code]
|
335 |
+
mt_tokenizer.src_lang = source_nllb_code
|
336 |
+
inputs = mt_tokenizer(transcription, return_tensors="pt", clean_up_tokenization_spaces=True).to(device)
|
337 |
+
with torch.no_grad():
|
338 |
+
generated_tokens = mt_model.generate(
|
339 |
+
**inputs,
|
340 |
+
forced_bos_token_id=mt_tokenizer.convert_tokens_to_ids(target_nllb_code),
|
341 |
+
max_length=448
|
342 |
+
)
|
343 |
+
translated_text = mt_tokenizer.batch_decode(generated_tokens, skip_special_tokens=True)[0]
|
344 |
+
logger.info(f"Translation completed: {translated_text}")
|
345 |
+
except Exception as e:
|
346 |
+
logger.error(f"Error during translation: {str(e)}")
|
347 |
+
translated_text = f"Translation failed: {str(e)}"
|
348 |
+
else:
|
349 |
+
logger.warning("MT model not loaded, skipping translation")
|
350 |
+
|
351 |
+
# Convert translated text to speech
|
352 |
+
output_audio = None
|
353 |
+
if model_status["tts"].startswith("loaded") and tts_model is not None and tts_tokenizer is not None:
|
354 |
+
try:
|
355 |
+
inputs = tts_tokenizer(translated_text, return_tensors="pt", clean_up_tokenization_spaces=True).to(device)
|
356 |
+
with torch.no_grad():
|
357 |
+
output = tts_model(**inputs)
|
358 |
+
speech = output.waveform.cpu().numpy().squeeze
|