Spaces:
Paused
Paused
Add STT functionality with openai/whisper-tiny
Browse files
app.py
CHANGED
@@ -1,12 +1,104 @@
|
|
|
|
|
|
|
|
|
|
1 |
import logging
|
2 |
-
|
|
|
|
|
|
|
|
|
|
|
3 |
from fastapi.responses import JSONResponse
|
|
|
4 |
|
5 |
# Configure logging
|
6 |
logging.basicConfig(level=logging.INFO)
|
7 |
-
logger = logging.getLogger("
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
8 |
|
9 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
|
11 |
@app.get("/")
|
12 |
async def root():
|
@@ -16,23 +108,109 @@ async def root():
|
|
16 |
|
17 |
@app.get("/health")
|
18 |
async def health_check():
|
19 |
-
"""Health check endpoint
|
|
|
20 |
logger.info("Health check requested")
|
21 |
-
return {
|
|
|
|
|
|
|
|
|
|
|
|
|
22 |
|
23 |
-
@app.
|
24 |
-
async def
|
25 |
-
|
26 |
-
|
27 |
-
|
|
|
28 |
|
29 |
-
@app.post("/
|
30 |
-
async def
|
31 |
-
"""
|
32 |
if not text:
|
33 |
raise HTTPException(status_code=400, detail="No text provided")
|
34 |
-
|
35 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
36 |
|
37 |
if __name__ == "__main__":
|
38 |
import uvicorn
|
|
|
1 |
+
import os
|
2 |
+
os.environ["HOME"] = "/root"
|
3 |
+
os.environ["HF_HOME"] = "/tmp/hf_cache"
|
4 |
+
|
5 |
import logging
|
6 |
+
import threading
|
7 |
+
import tempfile
|
8 |
+
import uuid
|
9 |
+
import numpy as np
|
10 |
+
import soundfile as sf
|
11 |
+
from fastapi import FastAPI, HTTPException, UploadFile, File, Form
|
12 |
from fastapi.responses import JSONResponse
|
13 |
+
from typing import Dict, Any, Optional
|
14 |
|
15 |
# Configure logging
|
16 |
logging.basicConfig(level=logging.INFO)
|
17 |
+
logger = logging.getLogger("talklas-api")
|
18 |
+
|
19 |
+
app = FastAPI(title="Talklas API")
|
20 |
+
|
21 |
+
# Global variables to track application state
|
22 |
+
models_loaded = False
|
23 |
+
loading_in_progress = False
|
24 |
+
loading_thread = None
|
25 |
+
model_status = {
|
26 |
+
"stt": "not_loaded",
|
27 |
+
"mt": "not_loaded",
|
28 |
+
"tts": "not_loaded"
|
29 |
+
}
|
30 |
+
error_message = None
|
31 |
+
|
32 |
+
# STT model and processor (will be loaded in background)
|
33 |
+
stt_processor = None
|
34 |
+
stt_model = None
|
35 |
+
|
36 |
+
# Define the valid languages
|
37 |
+
LANGUAGE_MAPPING = {
|
38 |
+
"English": "eng",
|
39 |
+
"Tagalog": "tgl",
|
40 |
+
"Cebuano": "ceb",
|
41 |
+
"Ilocano": "ilo",
|
42 |
+
"Waray": "war",
|
43 |
+
"Pangasinan": "pag"
|
44 |
+
}
|
45 |
|
46 |
+
# Function to load models in background
|
47 |
+
def load_models_task():
|
48 |
+
global models_loaded, loading_in_progress, model_status, error_message, stt_processor, stt_model
|
49 |
+
|
50 |
+
try:
|
51 |
+
loading_in_progress = True
|
52 |
+
|
53 |
+
# Import heavy libraries only when needed
|
54 |
+
logger.info("Starting to load STT model...")
|
55 |
+
import torch
|
56 |
+
from transformers import WhisperProcessor, WhisperForConditionalGeneration
|
57 |
+
|
58 |
+
# Load STT model
|
59 |
+
try:
|
60 |
+
logger.info("Loading Whisper model...")
|
61 |
+
model_status["stt"] = "loading"
|
62 |
+
stt_processor = WhisperProcessor.from_pretrained("openai/whisper-tiny")
|
63 |
+
stt_model = WhisperForConditionalGeneration.from_pretrained("openai/whisper-tiny")
|
64 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
65 |
+
stt_model.to(device)
|
66 |
+
logger.info("STT model loaded successfully")
|
67 |
+
model_status["stt"] = "loaded"
|
68 |
+
except Exception as e:
|
69 |
+
logger.error(f"Failed to load STT model: {str(e)}")
|
70 |
+
model_status["stt"] = "failed"
|
71 |
+
error_message = f"STT model loading failed: {str(e)}"
|
72 |
+
return
|
73 |
+
|
74 |
+
# Skip MT and TTS models for now to save memory
|
75 |
+
model_status["mt"] = "skipped"
|
76 |
+
model_status["tts"] = "skipped"
|
77 |
+
logger.info("MT and TTS models skipped to save memory")
|
78 |
+
|
79 |
+
models_loaded = True
|
80 |
+
logger.info("Model loading completed successfully")
|
81 |
+
|
82 |
+
except Exception as e:
|
83 |
+
error_message = str(e)
|
84 |
+
logger.error(f"Error in model loading task: {str(e)}")
|
85 |
+
finally:
|
86 |
+
loading_in_progress = False
|
87 |
+
|
88 |
+
# Start loading models in background
|
89 |
+
def start_model_loading():
|
90 |
+
global loading_thread, loading_in_progress
|
91 |
+
if not loading_in_progress and not models_loaded:
|
92 |
+
loading_in_progress = True
|
93 |
+
loading_thread = threading.Thread(target=load_models_task)
|
94 |
+
loading_thread.daemon = True
|
95 |
+
loading_thread.start()
|
96 |
+
|
97 |
+
# Start the background process when the app starts
|
98 |
+
@app.on_event("startup")
|
99 |
+
async def startup_event():
|
100 |
+
logger.info("Application starting up...")
|
101 |
+
start_model_loading()
|
102 |
|
103 |
@app.get("/")
|
104 |
async def root():
|
|
|
108 |
|
109 |
@app.get("/health")
|
110 |
async def health_check():
|
111 |
+
"""Health check endpoint that always returns successfully"""
|
112 |
+
global models_loaded, loading_in_progress, model_status, error_message
|
113 |
logger.info("Health check requested")
|
114 |
+
return {
|
115 |
+
"status": "healthy",
|
116 |
+
"models_loaded": models_loaded,
|
117 |
+
"loading_in_progress": loading_in_progress,
|
118 |
+
"model_status": model_status,
|
119 |
+
"error": error_message
|
120 |
+
}
|
121 |
|
122 |
+
@app.post("/update-languages")
|
123 |
+
async def update_languages(source_lang: str = Form(...), target_lang: str = Form(...)):
|
124 |
+
if source_lang not in LANGUAGE_MAPPING or target_lang not in LANGUAGE_MAPPING:
|
125 |
+
raise HTTPException(status_code=400, detail="Invalid language selected")
|
126 |
+
logger.info(f"Updating languages: {source_lang} → {target_lang}")
|
127 |
+
return {"status": f"Languages updated to {source_lang} → {target_lang}"}
|
128 |
|
129 |
+
@app.post("/translate-text")
|
130 |
+
async def translate_text(text: str = Form(...), source_lang: str = Form(...), target_lang: str = Form(...)):
|
131 |
+
"""Endpoint that creates a placeholder for text translation"""
|
132 |
if not text:
|
133 |
raise HTTPException(status_code=400, detail="No text provided")
|
134 |
+
if source_lang not in LANGUAGE_MAPPING or target_lang not in LANGUAGE_MAPPING:
|
135 |
+
raise HTTPException(status_code=400, detail="Invalid language selected")
|
136 |
+
|
137 |
+
logger.info(f"Translate-text requested: {text} from {source_lang} to {target_lang}")
|
138 |
+
request_id = str(uuid.uuid4())
|
139 |
+
return {
|
140 |
+
"request_id": request_id,
|
141 |
+
"status": "processing",
|
142 |
+
"message": "Translation not implemented yet (MT model not loaded).",
|
143 |
+
"source_text": text,
|
144 |
+
"translated_text": "Translation not available",
|
145 |
+
"output_audio": None
|
146 |
+
}
|
147 |
+
|
148 |
+
@app.post("/translate-audio")
|
149 |
+
async def translate_audio(audio: UploadFile = File(...), source_lang: str = Form(...), target_lang: str = Form(...)):
|
150 |
+
"""Endpoint to transcribe audio using STT"""
|
151 |
+
global stt_processor, stt_model
|
152 |
+
|
153 |
+
if not audio:
|
154 |
+
raise HTTPException(status_code=400, detail="No audio file provided")
|
155 |
+
if source_lang not in LANGUAGE_MAPPING or target_lang not in LANGUAGE_MAPPING:
|
156 |
+
raise HTTPException(status_code=400, detail="Invalid language selected")
|
157 |
+
|
158 |
+
logger.info(f"Translate-audio requested: {audio.filename} from {source_lang} to {target_lang}")
|
159 |
+
request_id = str(uuid.uuid4())
|
160 |
+
|
161 |
+
# Check if STT model is loaded
|
162 |
+
if model_status["stt"] != "loaded" or stt_processor is None or stt_model is None:
|
163 |
+
logger.warning("STT model not loaded, returning placeholder response")
|
164 |
+
return {
|
165 |
+
"request_id": request_id,
|
166 |
+
"status": "processing",
|
167 |
+
"message": "STT model not loaded yet. Please try again later.",
|
168 |
+
"source_text": "Transcription not available",
|
169 |
+
"translated_text": "Translation not available",
|
170 |
+
"output_audio": None
|
171 |
+
}
|
172 |
+
|
173 |
+
# Save the uploaded audio to a temporary file
|
174 |
+
with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as temp_file:
|
175 |
+
temp_file.write(await audio.read())
|
176 |
+
temp_path = temp_file.name
|
177 |
+
|
178 |
+
try:
|
179 |
+
# Read and preprocess the audio
|
180 |
+
waveform, sample_rate = sf.read(temp_path)
|
181 |
+
if sample_rate != 16000:
|
182 |
+
logger.info(f"Resampling audio from {sample_rate} Hz to 16000 Hz")
|
183 |
+
import librosa
|
184 |
+
waveform = librosa.resample(waveform, orig_sr=sample_rate, target_sr=16000)
|
185 |
+
|
186 |
+
# Process the audio with Whisper
|
187 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
188 |
+
inputs = stt_processor(waveform, sampling_rate=16000, return_tensors="pt").to(device)
|
189 |
+
with torch.no_grad():
|
190 |
+
generated_ids = stt_model.generate(**inputs)
|
191 |
+
transcription = stt_processor.batch_decode(generated_ids, skip_special_tokens=True)[0]
|
192 |
+
|
193 |
+
logger.info(f"Transcription completed: {transcription}")
|
194 |
+
return {
|
195 |
+
"request_id": request_id,
|
196 |
+
"status": "completed",
|
197 |
+
"message": "Transcription completed successfully. Translation and TTS not implemented yet.",
|
198 |
+
"source_text": transcription,
|
199 |
+
"translated_text": "Translation not available",
|
200 |
+
"output_audio": None
|
201 |
+
}
|
202 |
+
except Exception as e:
|
203 |
+
logger.error(f"Error during transcription: {str(e)}")
|
204 |
+
return {
|
205 |
+
"request_id": request_id,
|
206 |
+
"status": "failed",
|
207 |
+
"message": f"Transcription failed: {str(e)}",
|
208 |
+
"source_text": "Transcription not available",
|
209 |
+
"translated_text": "Translation not available",
|
210 |
+
"output_audio": None
|
211 |
+
}
|
212 |
+
finally:
|
213 |
+
os.unlink(temp_path)
|
214 |
|
215 |
if __name__ == "__main__":
|
216 |
import uvicorn
|