File size: 12,282 Bytes
f53ba4b
 
 
 
224fa8d
 
 
f53ba4b
 
 
 
 
 
 
 
 
 
224fa8d
 
f53ba4b
224fa8d
f53ba4b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
224fa8d
f53ba4b
 
224fa8d
f53ba4b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
224fa8d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f53ba4b
 
224fa8d
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
import os
import torch
import numpy as np
import soundfile as sf
from fastapi import FastAPI, File, UploadFile, HTTPException
from fastapi.responses import JSONResponse
from pydantic import BaseModel
from transformers import (
    AutoModelForSeq2SeqLM,
    AutoTokenizer,
    VitsModel,
    AutoProcessor,
    AutoModelForCTC,
    WhisperProcessor,
    WhisperForConditionalGeneration
)
from typing import Optional, Tuple, Dict, List
import base64
import io

# Your existing TalklasTranslator class (unchanged)
class TalklasTranslator:
    LANGUAGE_MAPPING = {
        "English": "eng",
        "Tagalog": "tgl",
        "Cebuano": "ceb",
        "Ilocano": "ilo",
        "Waray": "war",
        "Pangasinan": "pag"
    }

    NLLB_LANGUAGE_CODES = {
        "eng": "eng_Latn",
        "tgl": "tgl_Latn",
        "ceb": "ceb_Latn",
        "ilo": "ilo_Latn",
        "war": "war_Latn",
        "pag": "pag_Latn"
    }

    def __init__(
        self,
        source_lang: str = "eng",
        target_lang: str = "tgl",
        device: Optional[str] = None
    ):
        self.device = device or ("cuda" if torch.cuda.is_available() else "cpu")
        self.source_lang = source_lang
        self.target_lang = target_lang
        self.sample_rate = 16000

        print(f"Initializing Talklas Translator on {self.device}")
        self._initialize_stt_model()
        self._initialize_mt_model()
        self._initialize_tts_model()

    def _initialize_stt_model(self):
        try:
            print("Loading STT model...")
            try:
                self.stt_processor = AutoProcessor.from_pretrained("facebook/mms-1b-all")
                self.stt_model = AutoModelForCTC.from_pretrained("facebook/mms-1b-all")
                if self.source_lang in self.stt_processor.tokenizer.vocab.keys():
                    self.stt_processor.tokenizer.set_target_lang(self.source_lang)
                    self.stt_model.load_adapter(self.source_lang)
                    print(f"Loaded MMS STT model for {self.source_lang}")
                else:
                    print(f"Language {self.source_lang} not in MMS, using default")
            except Exception as mms_error:
                print(f"MMS loading failed: {mms_error}")
                print("Loading Whisper as fallback...")
                self.stt_processor = WhisperProcessor.from_pretrained("openai/whisper-small")
                self.stt_model = WhisperForConditionalGeneration.from_pretrained("openai/whisper-small")
                print("Loaded Whisper STT model")
            self.stt_model.to(self.device)
        except Exception as e:
            print(f"STT model initialization failed: {e}")
            raise RuntimeError("Could not initialize STT model")

    def _initialize_mt_model(self):
        try:
            print("Loading NLLB Translation model...")
            self.mt_model = AutoModelForSeq2SeqLM.from_pretrained("facebook/nllb-200-distilled-600M")
            self.mt_tokenizer = AutoTokenizer.from_pretrained("facebook/nllb-200-distilled-600M")
            self.mt_model.to(self.device)
            print("NLLB Translation model loaded")
        except Exception as e:
            print(f"MT model initialization failed: {e}")
            raise

    def _initialize_tts_model(self):
        try:
            print("Loading TTS model...")
            try:
                self.tts_model = VitsModel.from_pretrained(f"facebook/mms-tts-{self.target_lang}")
                self.tts_tokenizer = AutoTokenizer.from_pretrained(f"facebook/mms-tts-{self.target_lang}")
                print(f"Loaded TTS model for {self.target_lang}")
            except Exception as tts_error:
                print(f"Target language TTS failed: {tts_error}")
                print("Falling back to English TTS")
                self.tts_model = VitsModel.from_pretrained("facebook/mms-tts-eng")
                self.tts_tokenizer = AutoTokenizer.from_pretrained("facebook/mms-tts-eng")
            self.tts_model.to(self.device)
        except Exception as e:
            print(f"TTS model initialization failed: {e}")
            raise

    def update_languages(self, source_lang: str, target_lang: str) -> str:
        if source_lang == self.source_lang and target_lang == self.target_lang:
            return "Languages already set"
        self.source_lang = source_lang
        self.target_lang = target_lang
        self._initialize_stt_model()
        self._initialize_tts_model()
        return f"Languages updated to {source_lang}{target_lang}"

    def speech_to_text(self, audio_path: str) -> str:
        try:
            waveform, sample_rate = sf.read(audio_path)
            if sample_rate != 16000:
                import librosa
                waveform = librosa.resample(waveform, orig_sr=sample_rate, target_sr=16000)
            inputs = self.stt_processor(
                waveform,
                sampling_rate=16000,
                return_tensors="pt"
            ).to(self.device)
            with torch.no_grad():
                if isinstance(self.stt_model, WhisperForConditionalGeneration):
                    generated_ids = self.stt_model.generate(**inputs)
                    transcription = self.stt_processor.batch_decode(generated_ids, skip_special_tokens=True)[0]
                else:
                    logits = self.stt_model(**inputs).logits
                    predicted_ids = torch.argmax(logits, dim=-1)
                    transcription = self.stt_processor.batch_decode(predicted_ids)[0]
            return transcription
        except Exception as e:
            print(f"Speech recognition failed: {e}")
            raise RuntimeError("Speech recognition failed")

    def translate_text(self, text: str) -> str:
        try:
            source_code = self.NLLB_LANGUAGE_CODES[self.source_lang]
            target_code = self.NLLB_LANGUAGE_CODES[self.target_lang]
            self.mt_tokenizer.src_lang = source_code
            inputs = self.mt_tokenizer(text, return_tensors="pt").to(self.device)
            with torch.no_grad():
                generated_tokens = self.mt_model.generate(
                    **inputs,
                    forced_bos_token_id=self.mt_tokenizer.convert_tokens_to_ids(target_code),
                    max_length=448
                )
            return self.mt_tokenizer.batch_decode(generated_tokens, skip_special_tokens=True)[0]
        except Exception as e:
            print(f"Translation failed: {e}")
            raise RuntimeError("Text translation failed")

    def text_to_speech(self, text: str) -> Tuple[int, np.ndarray]:
        try:
            inputs = self.tts_tokenizer(text, return_tensors="pt").to(self.device)
            with torch.no_grad():
                output = self.tts_model(**inputs)
            speech = output.waveform.cpu().numpy().squeeze()
            speech = (speech * 32767).astype(np.int16)
            return self.tts_model.config.sampling_rate, speech
        except Exception as e:
            print(f"Speech synthesis failed: {e}")
            raise RuntimeError("Speech synthesis failed")

    def translate_speech(self, audio_path: str) -> Dict:
        try:
            source_text = self.speech_to_text(audio_path)
            translated_text = self.translate_text(source_text)
            sample_rate, audio = self.text_to_speech(translated_text)
            return {
                "source_text": source_text,
                "translated_text": translated_text,
                "output_audio": (sample_rate, audio),
                "performance": "Translation successful"
            }
        except Exception as e:
            return {
                "source_text": "Error",
                "translated_text": "Error",
                "output_audio": (16000, np.zeros(1000, dtype=np.int16)),
                "performance": f"Error: {str(e)}"
            }

    def translate_text_only(self, text: str) -> Dict:
        try:
            translated_text = self.translate_text(text)
            sample_rate, audio = self.text_to_speech(translated_text)
            return {
                "source_text": text,
                "translated_text": translated_text,
                "output_audio": (sample_rate, audio),
                "performance": "Translation successful"
            }
        except Exception as e:
            return {
                "source_text": text,
                "translated_text": "Error",
                "output_audio": (16000, np.zeros(1000, dtype=np.int16)),
                "performance": f"Error: {str(e)}"
            }

class TranslatorSingleton:
    _instance = None

    @classmethod
    def get_instance(cls):
        if cls._instance is None:
            cls._instance = TalklasTranslator()
        return cls._instance

# FastAPI application
app = FastAPI(title="Talklas API", description="Speech-to-Speech Translation API")

class TranslationRequest(BaseModel):
    source_lang: str
    target_lang: str
    text: Optional[str] = None

@app.post("/translate/audio")
async def translate_audio(file: UploadFile = File(...), source_lang: str = "English", target_lang: str = "Tagalog"):
    try:
        # Validate languages
        if source_lang not in TalklasTranslator.LANGUAGE_MAPPING or target_lang not in TalklasTranslator.LANGUAGE_MAPPING:
            raise HTTPException(status_code=400, detail="Invalid language selection")

        # Save uploaded audio file temporarily
        audio_path = f"temp_{file.filename}"
        with open(audio_path, "wb") as f:
            f.write(await file.read())

        # Update languages
        source_code = TalklasTranslator.LANGUAGE_MAPPING[source_lang]
        target_code = TalklasTranslator.LANGUAGE_MAPPING[target_lang]
        translator = TranslatorSingleton.get_instance()
        translator.update_languages(source_code, target_code)

        # Process the audio
        results = translator.translate_speech(audio_path)

        # Clean up temporary file
        os.remove(audio_path)

        # Convert audio to base64 for response
        sample_rate, audio = results["output_audio"]
        buffer = io.BytesIO()
        sf.write(buffer, audio, sample_rate, format="wav")
        audio_base64 = base64.b64encode(buffer.getvalue()).decode("utf-8")

        return JSONResponse(content={
            "source_text": results["source_text"],
            "translated_text": results["translated_text"],
            "audio_base64": audio_base64,
            "sample_rate": sample_rate,
            "performance": results["performance"]
        })
    except Exception as e:
        raise HTTPException(status_code=500, detail=f"Translation failed: {str(e)}")

@app.post("/translate/text")
async def translate_text(request: TranslationRequest):
    try:
        # Validate input
        if not request.text:
            raise HTTPException(status_code=400, detail="Text input is required")
        if request.source_lang not in TalklasTranslator.LANGUAGE_MAPPING or request.target_lang not in TalklasTranslator.LANGUAGE_MAPPING:
            raise HTTPException(status_code=400, detail="Invalid language selection")

        # Update languages
        source_code = TalklasTranslator.LANGUAGE_MAPPING[request.source_lang]
        target_code = TalklasTranslator.LANGUAGE_MAPPING[request.target_lang]
        translator = TranslatorSingleton.get_instance()
        translator.update_languages(source_code, target_code)

        # Process the text
        results = translator.translate_text_only(request.text)

        # Convert audio to base64 for response
        sample_rate, audio = results["output_audio"]
        buffer = io.BytesIO()
        sf.write(buffer, audio, sample_rate, format="wav")
        audio_base64 = base64.b64encode(buffer.getvalue()).decode("utf-8")

        return JSONResponse(content={
            "source_text": results["source_text"],
            "translated_text": results["translated_text"],
            "audio_base64": audio_base64,
            "sample_rate": sample_rate,
            "performance": results["performance"]
        })
    except Exception as e:
        raise HTTPException(status_code=500, detail=f"Translation failed: {str(e)}")

if __name__ == "__main__":
    import uvicorn
    uvicorn.run(app, host="0.0.0.0", port=8000)