Update app.py
Browse files
app.py
CHANGED
@@ -9,21 +9,11 @@ from sklearn.ensemble import RandomForestClassifier
|
|
9 |
scalerSession = rt.InferenceSession("standard_scaler.onnx")
|
10 |
modelSession = rt.InferenceSession("random_forest_model.onnx")
|
11 |
|
12 |
-
with open("random_forest_model.json", "r") as f:
|
13 |
-
params = json.load(f)
|
14 |
-
model = RandomForestClassifier(**params)
|
15 |
-
del(params)
|
16 |
-
|
17 |
def softmax(x):
|
18 |
"""Compute softmax values for each sets of scores in x."""
|
19 |
e_x = np.exp(x - np.max(x))
|
20 |
return e_x / e_x.sum()
|
21 |
|
22 |
-
with open("scaler.json", "r") as f:
|
23 |
-
params = json.load(f)
|
24 |
-
scaler = StandardScaler(**params)
|
25 |
-
del(params)
|
26 |
-
|
27 |
def calculate_bmi(weight, height):
|
28 |
# Calculate BMI
|
29 |
bmi = weight / (height ** 2)
|
|
|
9 |
scalerSession = rt.InferenceSession("standard_scaler.onnx")
|
10 |
modelSession = rt.InferenceSession("random_forest_model.onnx")
|
11 |
|
|
|
|
|
|
|
|
|
|
|
12 |
def softmax(x):
|
13 |
"""Compute softmax values for each sets of scores in x."""
|
14 |
e_x = np.exp(x - np.max(x))
|
15 |
return e_x / e_x.sum()
|
16 |
|
|
|
|
|
|
|
|
|
|
|
17 |
def calculate_bmi(weight, height):
|
18 |
# Calculate BMI
|
19 |
bmi = weight / (height ** 2)
|