import cv2 import numpy as np import gradio as gr from PIL import Image from scipy.ndimage import gaussian_filter from transformers import ( AutoImageProcessor, AutoModelForDepthEstimation, ) import torch def resize_to_512(img: Image.Image) -> Image.Image: return img.resize((512, 512)) if img.size != (512, 512) else img def gaussian_blur(img: Image.Image, kernel_size: int): img = resize_to_512(img) img_cv = cv2.cvtColor(np.array(img), cv2.COLOR_RGB2BGR) blurred = cv2.GaussianBlur(img_cv, (kernel_size | 1, kernel_size | 1), 0) return cv2.cvtColor(blurred, cv2.COLOR_BGR2RGB) depth_model_id = "depth-anything/Depth-Anything-V2-Small-hf" processor = AutoImageProcessor.from_pretrained(depth_model_id) depth_model = AutoModelForDepthEstimation.from_pretrained(depth_model_id) def lens_blur(img: Image.Image, max_blur_radius: int): img = resize_to_512(img) original = np.array(img).astype(np.float32) inputs = processor(images=img, return_tensors="pt") with torch.no_grad(): outputs = depth_model(**inputs) predicted_depth = outputs.predicted_depth depth = ( torch.nn.functional.interpolate( predicted_depth.unsqueeze(1), size=(512, 512), mode="bicubic", align_corners=False, ) .squeeze() .cpu() .numpy() ) depth_norm = (depth - depth.min()) / (depth.max() - depth.min()) depth_inverted = 1.0 - depth_norm num_levels = 6 max_sigma = max_blur_radius / 2.0 blur_levels = np.linspace(0, max_sigma, num_levels) blurred_images = [gaussian_filter(original, sigma=(s, s, 0)) for s in blur_levels] blurred_final = np.zeros_like(original, dtype=np.float32) depth_scaled = depth_inverted * (num_levels - 1) depth_int = np.floor(depth_scaled).astype(int) depth_frac = depth_scaled - depth_int for i in range(num_levels - 1): mask = depth_int == i alpha = depth_frac[mask] for c in range(3): blended = ( blurred_images[i][..., c][mask] * (1 - alpha) + blurred_images[i + 1][..., c][mask] * alpha ) blurred_final[..., c][mask] = blended return np.clip(blurred_final, 0, 255).astype(np.uint8) def synthetic_lens_blur(img: Image.Image, max_blur_radius: int): img = resize_to_512(img) original = cv2.cvtColor(np.array(img), cv2.COLOR_RGB2BGR) original_rgb = cv2.cvtColor(original, cv2.COLOR_BGR2RGB) depth_norm = np.zeros((original.shape[0], original.shape[1]), dtype=np.float32) cv2.circle(depth_norm, (original.shape[1] // 2, original.shape[0] // 2), 100, 1, -1) depth_norm = cv2.GaussianBlur(depth_norm, (21, 21), 0) blurred_image = np.zeros_like(original_rgb) for i in range(original.shape[0]): for j in range(original.shape[1]): blur_radius = int(depth_norm[i, j] * max_blur_radius) if blur_radius % 2 == 0: blur_radius += 1 x_min = max(j - blur_radius, 0) x_max = min(j + blur_radius, original.shape[1]) y_min = max(i - blur_radius, 0) y_max = min(i + blur_radius, original.shape[0]) roi = original_rgb[y_min:y_max, x_min:x_max] if blur_radius > 1: blurred_roi = cv2.GaussianBlur(roi, (blur_radius, blur_radius), 0) try: blurred_image[i, j] = blurred_roi[ blur_radius // 2, blur_radius // 2 ] except: blurred_image[i, j] = original_rgb[i, j] else: blurred_image[i, j] = original_rgb[i, j] return blurred_image def apply_all_blurs(img, g_kernel, lens_radius, synthetic_radius): g = gaussian_blur(img, g_kernel) l = lens_blur(img, lens_radius) s = synthetic_lens_blur(img, synthetic_radius) return g, l, s def update_gaussian(img, kernel_size): return gaussian_blur(img, kernel_size) def update_lens(img, radius): return lens_blur(img, radius) def update_synthetic(img, radius): return synthetic_lens_blur(img, radius) with gr.Blocks() as demo: gr.Markdown( "## 🌀 Blur Effects Comparison: Gaussian, Depth-Based, Synthetic (Depth Based Blur works with bottles)" ) with gr.Row(): image_input = gr.Image(type="pil", label="Upload Image") with gr.Row(): g_slider = gr.Slider(1, 49, step=2, value=11, label="Gaussian Kernel Size") lens_slider = gr.Slider( 1, 50, step=1, value=15, label="Depth-Based Blur Intensity (Works with bottles)", ) synth_slider = gr.Slider(1, 50, step=1, value=25, label="Synthetic Blur Radius") with gr.Row(): g_output = gr.Image(label="Gaussian Blurred Image") l_output = gr.Image(label="Depth-Based Lens Blurred Image") s_output = gr.Image(label="Synthetic Depth Lens Blurred Image") # Initial image upload updates all three image_input.change( fn=apply_all_blurs, inputs=[image_input, g_slider, lens_slider, synth_slider], outputs=[g_output, l_output, s_output], ) # Individual updates for each slider g_slider.change( fn=update_gaussian, inputs=[image_input, g_slider], outputs=g_output ) lens_slider.change( fn=update_lens, inputs=[image_input, lens_slider], outputs=l_output ) synth_slider.change( fn=update_synthetic, inputs=[image_input, synth_slider], outputs=s_output ) demo.launch()