JeanCGuerrero's picture
Update app.py
49bc36c verified
import gradio as gr
import torch
import torch.nn as nn
import numpy as np
from PIL import Image
import torchvision.transforms as transforms
# Modelo Autoencoder
class Autoencoder(nn.Module):
def __init__(self):
super(Autoencoder, self).__init__()
self.conv1 = nn.Conv2d(1, 32, kernel_size=3, stride=2, padding=1)
self.conv2 = nn.Conv2d(32, 64, kernel_size=3, stride=2, padding=1)
self.conv3 = nn.Conv2d(64, 128, kernel_size=3, stride=2, padding=1)
self.fc1 = nn.Linear(128 * 8 * 8, 32)
self.fc2 = nn.Linear(32, 128 * 8 * 8)
self.conv4 = nn.ConvTranspose2d(128, 64, kernel_size=3, stride=2, padding=1, output_padding=1)
self.conv5 = nn.ConvTranspose2d(64, 32, kernel_size=3, stride=2, padding=1, output_padding=1)
self.conv6 = nn.ConvTranspose2d(32, 1, kernel_size=3, stride=2, padding=1, output_padding=1)
def encode(self, x):
z = torch.tanh(self.conv1(x))
z = torch.tanh(self.conv2(z))
z = torch.tanh(self.conv3(z))
z = z.view(z.size(0), -1)
z = torch.tanh(self.fc1(z))
return z
def decode(self, x):
z = torch.tanh(self.fc2(x))
z = z.view(z.size(0), 128, 8, 8)
z = torch.tanh(self.conv4(z))
z = torch.tanh(self.conv5(z))
z = torch.sigmoid(self.conv6(z))
return z
def forward(self, x):
return self.decode(self.encode(x))
# Cargar el modelo
model = Autoencoder()
model.load_state_dict(torch.load("autoencoder.pth", map_location=torch.device("cpu")))
model.eval()
# Transformaci贸n
transform = transforms.Compose([
transforms.Grayscale(),
transforms.Resize((64, 64)),
transforms.ToTensor()
])
# Umbral de error (ajustable)
THRESHOLD = 0.01
# Funci贸n de predicci贸n
def detectar_anomalia(imagen):
img_tensor = transform(imagen).unsqueeze(0)
with torch.no_grad():
reconstruida = model(img_tensor)
mse = torch.mean((img_tensor - reconstruida) ** 2).item()
resultado = "An贸mala" if mse > THRESHOLD else "Normal"
return resultado
# Interfaz Gradio
demo = gr.Interface(
fn=detectar_anomalia,
inputs=gr.Image(type="pil", label="Sube una imagen para analizar"),
outputs=gr.Label(label="Resultado"),
examples=["anomalous.png", "normal.png"],
title="Detecci贸n de Anomal铆as con Autoencoder (PyTorch)",
description="Este Space utiliza un autoencoder entrenado con PyTorch para detectar anomal铆as en im谩genes de textiles.",
)
demo.launch()