import streamlit as st from transformers import AutoModelForSeq2SeqLM, AutoTokenizer import torch st.set_page_config(page_title="Grammar Corrector", page_icon="📝") st.title("📝 AI Grammar & Spell Corrector") @st.cache_resource def load_model(): model = AutoModelForSeq2SeqLM.from_pretrained("vennify/t5-base-grammar-correction") tokenizer = AutoTokenizer.from_pretrained("vennify/t5-base-grammar-correction") return model, tokenizer model, tokenizer = load_model() def correct_grammar(text): input_text = "grammar: " + text inputs = tokenizer.encode(input_text, return_tensors="pt", max_length=512, truncation=True) with torch.no_grad(): outputs = model.generate(inputs, max_length=512, num_beams=4, early_stopping=True) corrected = tokenizer.decode(outputs[0], skip_special_tokens=True) return corrected text = st.text_area("Enter your text:", height=200) if st.button("Correct Text"): if text.strip(): with st.spinner("Correcting..."): corrected = correct_grammar(text) st.subheader("✅ Corrected Text") st.write(corrected) else: st.warning("Please enter some text.")