File size: 9,475 Bytes
b5991b5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
66d84a0
b5991b5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
24d877e
b5991b5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5fc17f7
b5991b5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
05b5af5
 
 
 
 
 
 
b5991b5
 
 
 
105d924
b5991b5
 
 
 
 
 
 
 
 
4e66509
b5991b5
 
 
 
 
 
 
 
 
 
 
 
 
24d877e
b5991b5
 
 
 
 
 
 
 
 
 
 
 
 
 
05b5af5
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
# %%
# %%
import gradio as gr
import pandas as pd
import yfinance as yf
from datetime import datetime
import plotly.graph_objects as go
import numpy as np

# Functions for calculating indicators (SMA, RSI, etc.) and generating trading signals

def calculate_sma(df, window):
    return df['Close'].rolling(window=window).mean()

def calculate_ema(df, window):
    return df['Close'].ewm(span=window, adjust=False).mean()


def calculate_macd(df):
    short_ema = df['Close'].ewm(span=12, adjust=False).mean()
    long_ema = df['Close'].ewm(span=26, adjust=False).mean()
    macd = short_ema - long_ema
    signal = macd.ewm(span=9, adjust=False).mean()
    return macd, signal


def calculate_rsi(df):
    delta = df['Close'].diff()
    gain = (delta.where(delta > 0, 0)).rolling(window=14).mean()
    loss = (-delta.where(delta < 0, 0)).rolling(window=14).mean()
    rs = gain / loss
    rsi = 100 - (100 / (1 + rs))
    return rsi

def calculate_bollinger_bands(df):
    middle_bb = df['Close'].rolling(window=20).mean()
    upper_bb = middle_bb + 2 * df['Close'].rolling(window=20).std()
    lower_bb = middle_bb - 2 * df['Close'].rolling(window=20).std()
    return middle_bb, upper_bb, lower_bb

def calculate_stochastic_oscillator(df):
    lowest_low = df['Low'].rolling(window=14).min()
    highest_high = df['High'].rolling(window=14).max()
    slowk = ((df['Close'] - lowest_low) / (highest_high - lowest_low)) * 100
    slowd = slowk.rolling(window=3).mean()
    return slowk, slowd



def calculate_cmf(df, window=20):
    mfv = ((df['Close'] - df['Low']) - (df['High'] - df['Close'])) / (df['High'] - df['Low']) * df['Volume']
    cmf = mfv.rolling(window=window).sum() / df['Volume'].rolling(window=window).sum()
    return cmf

def calculate_cci(df, window=20):
    """Calculate Commodity Channel Index (CCI)."""
    typical_price = (df['High'] + df['Low'] + df['Close']) / 3
    sma = typical_price.rolling(window=window).mean()
    mean_deviation = (typical_price - sma).abs().rolling(window=window).mean()
    cci = (typical_price - sma) / (0.015 * mean_deviation)
    return cci



def generate_trading_signals(df):
    # Calculate various indicators
    df['SMA_30'] = calculate_sma(df, 30)
    df['SMA_100'] = calculate_sma(df, 100)
    df['EMA_12'] = calculate_ema(df, 12)
    df['EMA_26'] = calculate_ema(df, 26)
    df['RSI'] = calculate_rsi(df)
    df['MiddleBB'], df['UpperBB'], df['LowerBB'] = calculate_bollinger_bands(df)
    df['SlowK'], df['SlowD'] = calculate_stochastic_oscillator(df)
    df['CMF'] = calculate_cmf(df)
    df['CCI'] = calculate_cci(df)

    

    # Generate trading signals
    df['SMA_Signal'] = np.where(df['SMA_30'] > df['SMA_100'], 1, 0)
    
    macd, signal = calculate_macd(df)
    df['MACD_Signal'] = np.select([(macd > signal) & (macd.shift(1) <= signal.shift(1)),
                                    (macd < signal) & (macd.shift(1) >= signal.shift(1))],[1, -1], default=0)


    
    df['RSI_Signal'] = np.where(df['RSI'] < 20, 1, 0)
    df['RSI_Signal'] = np.where(df['RSI'] > 90, -1, df['RSI_Signal'])
    
    df['BB_Signal'] = np.where(df['Close'] < df['LowerBB'], 0, 0)
    df['BB_Signal'] = np.where(df['Close'] > df['UpperBB'], -1, df['BB_Signal'])
    
    df['Stochastic_Signal'] = np.where((df['SlowK'] < 10) & (df['SlowD'] < 15), 1, 0)
    df['Stochastic_Signal'] = np.where((df['SlowK'] > 90) & (df['SlowD'] > 85), -1, df['Stochastic_Signal'])
    

    df['CMF_Signal'] = np.where(df['CMF'] > 0.3, -1, np.where(df['CMF'] < -0.3, 1, 0))

    
    df['CCI_Signal'] = np.where(df['CCI'] < -180, 1, 0)
    df['CCI_Signal'] = np.where(df['CCI'] > 150, -1, df['CCI_Signal'])
    


    # Combined signal for stronger buy/sell points
    df['Combined_Signal'] = df[['RSI_Signal', 'BB_Signal', 
                                  'Stochastic_Signal', 'CMF_Signal', 
                                  'CCI_Signal']].sum(axis=1)

    return df


# %%
def plot_combined_signals(df, ticker):
    # Create a figure
    fig = go.Figure()

    # Add closing price trace
    fig.add_trace(go.Scatter(
        x=df.index, y=df['Close'], 
        mode='lines', 
        name='Closing Price', 
        line=dict(color='lightcoral', width=2)
    ))

    # Add buy signals
    buy_signals = df[df['Combined_Signal'] >= 3]
    fig.add_trace(go.Scatter(
        x=buy_signals.index, y=buy_signals['Close'], 
        mode='markers', 
        marker=dict(symbol='triangle-up', size=10, color='lightgreen'), 
        name='Buy Signal'
    ))

    # Add sell signals
    sell_signals = df[df['Combined_Signal'] <= -3]
    fig.add_trace(go.Scatter(
        x=sell_signals.index, y=sell_signals['Close'], 
        mode='markers', 
        marker=dict(symbol='triangle-down', size=10, color='lightsalmon'), 
        name='Sell Signal'
    ))

    # Combined signal trace
    fig.add_trace(go.Scatter(
        x=df.index, y=df['Combined_Signal'], 
        mode='lines', 
        name='Combined Signal', 
        line=dict(color='deepskyblue', width=2), 
        yaxis='y2'
    ))

    # Update layout
    fig.update_layout(
        title=f'{ticker}: Stock Price and Combined Trading Signal (Last 120 Days)',
        xaxis=dict(title='Date'),
        yaxis=dict(title='Price', side='left'),
        yaxis2=dict(title='Combined Signal', overlaying='y', side='right', showgrid=False),
        plot_bgcolor='black',
        paper_bgcolor='black',
        font=dict(color='white')
    )

    return fig




# %%
def plot_individual_signals(df, ticker):
    # Create a figure
    fig = go.Figure()
    fig.add_trace(go.Scatter(
        x=df.index, y=df['Close'], 
        mode='lines', 
        name='Closing Price', 
        line=dict(color='lightcoral', width=2)
    ))

    # Add buy/sell signals for each indicator
    signal_names = ['RSI_Signal', 'BB_Signal', 
                    'Stochastic_Signal', 'CMF_Signal', 
                    'CCI_Signal']

    for signal in signal_names:
        buy_signals = df[df[signal] == 1]
        sell_signals = df[df[signal] == -1]
        
        fig.add_trace(go.Scatter(
            x=buy_signals.index, y=buy_signals['Close'], 
            mode='markers', 
            marker=dict(symbol='triangle-up', size=10, color='lightgreen'), 
            name=f'{signal} Buy Signal'
        ))

        fig.add_trace(go.Scatter(
            x=sell_signals.index, y=sell_signals['Close'], 
            mode='markers', 
            marker=dict(symbol='triangle-down', size=10, color='lightsalmon'), 
            name=f'{signal} Sell Signal'
        ))

    fig.update_layout(
        title=f'{ticker}: Individual Trading Signals',
        xaxis=dict(title='Date'),
        yaxis=dict(title='Price', side='left'),
        plot_bgcolor='black',
        paper_bgcolor='black',
        font=dict(color='white')
    )

    return fig


def display_signals(df):
    # Create a signals DataFrame
    signals_df = df[['Close', 'SMA_Signal', 'MACD_Signal', 'RSI_Signal', 
                      'BB_Signal', 'Stochastic_Signal', 
                      'CMF_Signal', 'CCI_Signal']].copy()

    # The Date is the index, so we don't need to add it as a column
    signals_df.index.name = 'Date'  # Name the index for better readability

    # Replace signal values with 'Buy', 'Sell', or 'Hold'
    for column in signals_df.columns:
        signals_df[column] = signals_df[column].replace(
            {1: 'Buy', -1: 'Sell', 0: 'Hold'}
        )

    return signals_df

def stock_analysis(ticker, start_date, end_date):
    # Download stock data from Yahoo Finance
    df = yf.download(ticker, start=start_date, end=end_date)

    # If the DataFrame has a MultiIndex for columns, drop the 'Ticker' level
    if isinstance(df.columns, pd.MultiIndex):
        df.columns = df.columns.droplevel(level=1)  # Drop the 'Ticker' level

    # Explicitly set column names (optional)
    df.columns = ['Close', 'High', 'Low', 'Open', 'Volume']

    # Generate signals
    df = generate_trading_signals(df)
    
    # Last 60 days for plotting
    df_last_60 = df.tail(120)

    # Plot combined signals
    fig_signals = plot_combined_signals(df_last_60, ticker)

    # Plot individual signals
    fig_individual_signals = plot_individual_signals(df_last_60, ticker)

    # Display signals DataFrame
    signals_df = df_last_60[['Close', 'SMA_Signal', 'MACD_Signal', 'RSI_Signal', 'BB_Signal', 
                              'Stochastic_Signal','CMF_Signal', 
                              'CCI_Signal']]

    return fig_signals, fig_individual_signals



# %%
# Define Gradio interface
with gr.Blocks() as demo:
    gr.Markdown("## Stock Market Analysis App")

    ticker_input = gr.Textbox(label="Enter Stock Ticker (e.g., AAPL, NVDA)", value="NVDA")
    start_date_input = gr.Textbox(label="Start Date (YYYY-MM-DD)", value="2022-01-01")
    end_date_input = gr.Textbox(label="End Date (YYYY-MM-DD)", value="2026-01-01")

    # Create a submit button that runs the stock analysis function
    button = gr.Button("Analyze Stock")
    
    # Outputs: Display results, charts
    combined_signals_output = gr.Plot(label="Combined Trading Signals")
    individual_signals_output = gr.Plot(label="Individual Trading Signals")
    #signals_df_output = gr.Dataframe(label="Buy/Sell Signals")

    # Link button to function
    button.click(stock_analysis, inputs=[ticker_input, start_date_input, end_date_input], 
                  outputs=[combined_signals_output, individual_signals_output])

# Launch the interface
demo.launch()