File size: 9,475 Bytes
b5991b5 66d84a0 b5991b5 24d877e b5991b5 5fc17f7 b5991b5 05b5af5 b5991b5 105d924 b5991b5 4e66509 b5991b5 24d877e b5991b5 05b5af5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 |
# %%
# %%
import gradio as gr
import pandas as pd
import yfinance as yf
from datetime import datetime
import plotly.graph_objects as go
import numpy as np
# Functions for calculating indicators (SMA, RSI, etc.) and generating trading signals
def calculate_sma(df, window):
return df['Close'].rolling(window=window).mean()
def calculate_ema(df, window):
return df['Close'].ewm(span=window, adjust=False).mean()
def calculate_macd(df):
short_ema = df['Close'].ewm(span=12, adjust=False).mean()
long_ema = df['Close'].ewm(span=26, adjust=False).mean()
macd = short_ema - long_ema
signal = macd.ewm(span=9, adjust=False).mean()
return macd, signal
def calculate_rsi(df):
delta = df['Close'].diff()
gain = (delta.where(delta > 0, 0)).rolling(window=14).mean()
loss = (-delta.where(delta < 0, 0)).rolling(window=14).mean()
rs = gain / loss
rsi = 100 - (100 / (1 + rs))
return rsi
def calculate_bollinger_bands(df):
middle_bb = df['Close'].rolling(window=20).mean()
upper_bb = middle_bb + 2 * df['Close'].rolling(window=20).std()
lower_bb = middle_bb - 2 * df['Close'].rolling(window=20).std()
return middle_bb, upper_bb, lower_bb
def calculate_stochastic_oscillator(df):
lowest_low = df['Low'].rolling(window=14).min()
highest_high = df['High'].rolling(window=14).max()
slowk = ((df['Close'] - lowest_low) / (highest_high - lowest_low)) * 100
slowd = slowk.rolling(window=3).mean()
return slowk, slowd
def calculate_cmf(df, window=20):
mfv = ((df['Close'] - df['Low']) - (df['High'] - df['Close'])) / (df['High'] - df['Low']) * df['Volume']
cmf = mfv.rolling(window=window).sum() / df['Volume'].rolling(window=window).sum()
return cmf
def calculate_cci(df, window=20):
"""Calculate Commodity Channel Index (CCI)."""
typical_price = (df['High'] + df['Low'] + df['Close']) / 3
sma = typical_price.rolling(window=window).mean()
mean_deviation = (typical_price - sma).abs().rolling(window=window).mean()
cci = (typical_price - sma) / (0.015 * mean_deviation)
return cci
def generate_trading_signals(df):
# Calculate various indicators
df['SMA_30'] = calculate_sma(df, 30)
df['SMA_100'] = calculate_sma(df, 100)
df['EMA_12'] = calculate_ema(df, 12)
df['EMA_26'] = calculate_ema(df, 26)
df['RSI'] = calculate_rsi(df)
df['MiddleBB'], df['UpperBB'], df['LowerBB'] = calculate_bollinger_bands(df)
df['SlowK'], df['SlowD'] = calculate_stochastic_oscillator(df)
df['CMF'] = calculate_cmf(df)
df['CCI'] = calculate_cci(df)
# Generate trading signals
df['SMA_Signal'] = np.where(df['SMA_30'] > df['SMA_100'], 1, 0)
macd, signal = calculate_macd(df)
df['MACD_Signal'] = np.select([(macd > signal) & (macd.shift(1) <= signal.shift(1)),
(macd < signal) & (macd.shift(1) >= signal.shift(1))],[1, -1], default=0)
df['RSI_Signal'] = np.where(df['RSI'] < 20, 1, 0)
df['RSI_Signal'] = np.where(df['RSI'] > 90, -1, df['RSI_Signal'])
df['BB_Signal'] = np.where(df['Close'] < df['LowerBB'], 0, 0)
df['BB_Signal'] = np.where(df['Close'] > df['UpperBB'], -1, df['BB_Signal'])
df['Stochastic_Signal'] = np.where((df['SlowK'] < 10) & (df['SlowD'] < 15), 1, 0)
df['Stochastic_Signal'] = np.where((df['SlowK'] > 90) & (df['SlowD'] > 85), -1, df['Stochastic_Signal'])
df['CMF_Signal'] = np.where(df['CMF'] > 0.3, -1, np.where(df['CMF'] < -0.3, 1, 0))
df['CCI_Signal'] = np.where(df['CCI'] < -180, 1, 0)
df['CCI_Signal'] = np.where(df['CCI'] > 150, -1, df['CCI_Signal'])
# Combined signal for stronger buy/sell points
df['Combined_Signal'] = df[['RSI_Signal', 'BB_Signal',
'Stochastic_Signal', 'CMF_Signal',
'CCI_Signal']].sum(axis=1)
return df
# %%
def plot_combined_signals(df, ticker):
# Create a figure
fig = go.Figure()
# Add closing price trace
fig.add_trace(go.Scatter(
x=df.index, y=df['Close'],
mode='lines',
name='Closing Price',
line=dict(color='lightcoral', width=2)
))
# Add buy signals
buy_signals = df[df['Combined_Signal'] >= 3]
fig.add_trace(go.Scatter(
x=buy_signals.index, y=buy_signals['Close'],
mode='markers',
marker=dict(symbol='triangle-up', size=10, color='lightgreen'),
name='Buy Signal'
))
# Add sell signals
sell_signals = df[df['Combined_Signal'] <= -3]
fig.add_trace(go.Scatter(
x=sell_signals.index, y=sell_signals['Close'],
mode='markers',
marker=dict(symbol='triangle-down', size=10, color='lightsalmon'),
name='Sell Signal'
))
# Combined signal trace
fig.add_trace(go.Scatter(
x=df.index, y=df['Combined_Signal'],
mode='lines',
name='Combined Signal',
line=dict(color='deepskyblue', width=2),
yaxis='y2'
))
# Update layout
fig.update_layout(
title=f'{ticker}: Stock Price and Combined Trading Signal (Last 120 Days)',
xaxis=dict(title='Date'),
yaxis=dict(title='Price', side='left'),
yaxis2=dict(title='Combined Signal', overlaying='y', side='right', showgrid=False),
plot_bgcolor='black',
paper_bgcolor='black',
font=dict(color='white')
)
return fig
# %%
def plot_individual_signals(df, ticker):
# Create a figure
fig = go.Figure()
fig.add_trace(go.Scatter(
x=df.index, y=df['Close'],
mode='lines',
name='Closing Price',
line=dict(color='lightcoral', width=2)
))
# Add buy/sell signals for each indicator
signal_names = ['RSI_Signal', 'BB_Signal',
'Stochastic_Signal', 'CMF_Signal',
'CCI_Signal']
for signal in signal_names:
buy_signals = df[df[signal] == 1]
sell_signals = df[df[signal] == -1]
fig.add_trace(go.Scatter(
x=buy_signals.index, y=buy_signals['Close'],
mode='markers',
marker=dict(symbol='triangle-up', size=10, color='lightgreen'),
name=f'{signal} Buy Signal'
))
fig.add_trace(go.Scatter(
x=sell_signals.index, y=sell_signals['Close'],
mode='markers',
marker=dict(symbol='triangle-down', size=10, color='lightsalmon'),
name=f'{signal} Sell Signal'
))
fig.update_layout(
title=f'{ticker}: Individual Trading Signals',
xaxis=dict(title='Date'),
yaxis=dict(title='Price', side='left'),
plot_bgcolor='black',
paper_bgcolor='black',
font=dict(color='white')
)
return fig
def display_signals(df):
# Create a signals DataFrame
signals_df = df[['Close', 'SMA_Signal', 'MACD_Signal', 'RSI_Signal',
'BB_Signal', 'Stochastic_Signal',
'CMF_Signal', 'CCI_Signal']].copy()
# The Date is the index, so we don't need to add it as a column
signals_df.index.name = 'Date' # Name the index for better readability
# Replace signal values with 'Buy', 'Sell', or 'Hold'
for column in signals_df.columns:
signals_df[column] = signals_df[column].replace(
{1: 'Buy', -1: 'Sell', 0: 'Hold'}
)
return signals_df
def stock_analysis(ticker, start_date, end_date):
# Download stock data from Yahoo Finance
df = yf.download(ticker, start=start_date, end=end_date)
# If the DataFrame has a MultiIndex for columns, drop the 'Ticker' level
if isinstance(df.columns, pd.MultiIndex):
df.columns = df.columns.droplevel(level=1) # Drop the 'Ticker' level
# Explicitly set column names (optional)
df.columns = ['Close', 'High', 'Low', 'Open', 'Volume']
# Generate signals
df = generate_trading_signals(df)
# Last 60 days for plotting
df_last_60 = df.tail(120)
# Plot combined signals
fig_signals = plot_combined_signals(df_last_60, ticker)
# Plot individual signals
fig_individual_signals = plot_individual_signals(df_last_60, ticker)
# Display signals DataFrame
signals_df = df_last_60[['Close', 'SMA_Signal', 'MACD_Signal', 'RSI_Signal', 'BB_Signal',
'Stochastic_Signal','CMF_Signal',
'CCI_Signal']]
return fig_signals, fig_individual_signals
# %%
# Define Gradio interface
with gr.Blocks() as demo:
gr.Markdown("## Stock Market Analysis App")
ticker_input = gr.Textbox(label="Enter Stock Ticker (e.g., AAPL, NVDA)", value="NVDA")
start_date_input = gr.Textbox(label="Start Date (YYYY-MM-DD)", value="2022-01-01")
end_date_input = gr.Textbox(label="End Date (YYYY-MM-DD)", value="2026-01-01")
# Create a submit button that runs the stock analysis function
button = gr.Button("Analyze Stock")
# Outputs: Display results, charts
combined_signals_output = gr.Plot(label="Combined Trading Signals")
individual_signals_output = gr.Plot(label="Individual Trading Signals")
#signals_df_output = gr.Dataframe(label="Buy/Sell Signals")
# Link button to function
button.click(stock_analysis, inputs=[ticker_input, start_date_input, end_date_input],
outputs=[combined_signals_output, individual_signals_output])
# Launch the interface
demo.launch() |