Spaces:
Running
Running
import gradio as gr | |
import pandas as pd | |
import yfinance as yf | |
import plotly.graph_objects as go | |
import numpy as np | |
# Functions for calculating indicators | |
def calculate_sma(df, window): | |
return df['Close'].rolling(window=window).mean() | |
def calculate_ema(df, window): | |
return df['Close'].ewm(span=window, adjust=False).mean() | |
def calculate_macd(df): | |
short_ema = df['Close'].ewm(span=12, adjust=False).mean() | |
long_ema = df['Close'].ewm(span=26, adjust=False).mean() | |
macd = short_ema - long_ema | |
signal = macd.ewm(span=9, adjust=False).mean() | |
return macd, signal | |
def calculate_rsi(df): | |
delta = df['Close'].diff() | |
gain = (delta.where(delta > 0, 0)).rolling(window=14).mean() | |
loss = (-delta.where(delta < 0, 0)).rolling(window=14).mean() | |
rs = gain / loss | |
rsi = 100 - (100 / (1 + rs)) | |
return rsi | |
def calculate_bollinger_bands(df): | |
middle_bb = df['Close'].rolling(window=20).mean() | |
upper_bb = middle_bb + 2 * df['Close'].rolling(window=20).std() | |
lower_bb = middle_bb - 2 * df['Close'].rolling(window=20).std() | |
return middle_bb, upper_bb, lower_bb | |
def calculate_stochastic_oscillator(df): | |
lowest_low = df['Low'].rolling(window=14).min() | |
highest_high = df['High'].rolling(window=14).max() | |
slowk = ((df['Close'] - lowest_low) / (highest_high - lowest_low)) * 100 | |
slowd = slowk.rolling(window=3).mean() | |
return slowk, slowd | |
def calculate_cmf(df, window=20): | |
mfv = ((df['Close'] - df['Low']) - (df['High'] - df['Close'])) / (df['High'] - df['Low']) * df['Volume'] | |
cmf = mfv.rolling(window=window).sum() / df['Volume'].rolling(window=window).sum() | |
return cmf | |
def calculate_cci(df, window=20): | |
typical_price = (df['High'] + df['Low'] + df['Close']) / 3 | |
sma = typical_price.rolling(window=window).mean() | |
mean_deviation = (typical_price - sma).abs().rolling(window=window).mean() | |
cci = (typical_price - sma) / (0.015 * mean_deviation) | |
return cci | |
# Function to adjust thresholds based on sensitivity | |
def adjust_thresholds_by_sensitivity(sensitivity): | |
""" | |
Convert a single sensitivity value (1-10) to appropriate thresholds | |
1 = Most sensitive (more signals) | |
10 = Least sensitive (fewer, stronger signals) | |
""" | |
# Map sensitivity to thresholds | |
if sensitivity == 1: # Most sensitive | |
return { | |
'SMA': 5, | |
'RSI_lower': 30, | |
'RSI_upper': 70, | |
'BB': 0.5, | |
'Stochastic_lower': 20, | |
'Stochastic_upper': 80, | |
'CMF': 0.1, | |
'CCI': 100 | |
} | |
elif sensitivity == 10: # Least sensitive | |
return { | |
'SMA': 50, | |
'RSI_lower': 5, | |
'RSI_upper': 95, | |
'BB': 5, | |
'Stochastic_lower': 5, | |
'Stochastic_upper': 95, | |
'CMF': 0.6, | |
'CCI': 300 | |
} | |
else: | |
# Linear interpolation between extremes | |
factor = (sensitivity - 1) / 9 # 0 to 1 | |
return { | |
'SMA': int(5 + (50 - 5) * factor), | |
'RSI_lower': int(30 - (30 - 5) * factor), | |
'RSI_upper': int(70 + (95 - 70) * factor), | |
'BB': 0.5 + (5 - 0.5) * factor, | |
'Stochastic_lower': int(20 - (20 - 5) * factor), | |
'Stochastic_upper': int(80 + (95 - 80) * factor), | |
'CMF': 0.1 + (0.6 - 0.1) * factor, | |
'CCI': int(100 + (300 - 100) * factor) | |
} | |
def generate_trading_signals(df, thresholds, enabled_signals): | |
# Calculate various indicators | |
df['SMA_30'] = calculate_sma(df, 30) | |
df['SMA_100'] = calculate_sma(df, 100) | |
df['EMA_12'] = calculate_ema(df, 12) | |
df['EMA_26'] = calculate_ema(df, 26) | |
df['RSI'] = calculate_rsi(df) | |
df['MiddleBB'], df['UpperBB'], df['LowerBB'] = calculate_bollinger_bands(df) | |
df['SlowK'], df['SlowD'] = calculate_stochastic_oscillator(df) | |
df['CMF'] = calculate_cmf(df) | |
df['CCI'] = calculate_cci(df) | |
# Initialize all signals as 0 (no signal) | |
signal_columns = ['SMA_Signal', 'MACD_Signal', 'RSI_Signal', 'BB_Signal', | |
'Stochastic_Signal', 'CMF_Signal', 'CCI_Signal'] | |
for col in signal_columns: | |
df[col] = 0 | |
# Only generate signals for enabled indicators | |
# SMA Signal | |
if 'SMA' in enabled_signals: | |
sma_threshold = thresholds['SMA'] | |
df['SMA_Diff_Pct'] = (df['SMA_30'] - df['SMA_100']) / df['SMA_100'] * 100 | |
df['SMA_Signal'] = np.where(df['SMA_Diff_Pct'] > sma_threshold, 1, 0) | |
df['SMA_Signal'] = np.where(df['SMA_Diff_Pct'] < -sma_threshold, -1, df['SMA_Signal']) | |
# MACD Signal | |
if 'MACD' in enabled_signals: | |
macd, signal = calculate_macd(df) | |
df['MACD'] = macd | |
df['MACD_Signal_Line'] = signal | |
df['MACD_Signal'] = np.select([(macd > signal) & (macd.shift(1) <= signal.shift(1)), | |
(macd < signal) & (macd.shift(1) >= signal.shift(1))], [1, -1], default=0) | |
# RSI Signals | |
if 'RSI' in enabled_signals: | |
rsi_lower = thresholds['RSI_lower'] | |
rsi_upper = thresholds['RSI_upper'] | |
df['RSI_Signal'] = np.where(df['RSI'] < rsi_lower, 1, 0) | |
df['RSI_Signal'] = np.where(df['RSI'] > rsi_upper, -1, df['RSI_Signal']) | |
# Bollinger Bands | |
if 'BB' in enabled_signals: | |
bb_buffer = thresholds['BB'] / 100 # Convert percentage to decimal | |
df['BB_Signal'] = np.where( | |
(df['Close'] < df['LowerBB'] * (1 - bb_buffer)) & | |
(df['Close'].shift(1) < df['LowerBB'].shift(1) * (1 - bb_buffer)) & | |
(df['Close'].shift(2) < df['LowerBB'].shift(2) * (1 - bb_buffer)), 1, 0 | |
) | |
df['BB_Signal'] = np.where( | |
(df['Close'] > df['UpperBB'] * (1 + bb_buffer)) & | |
(df['Close'].shift(1) > df['UpperBB'].shift(1) * (1 + bb_buffer)) & | |
(df['Close'].shift(2) > df['UpperBB'].shift(2) * (1 + bb_buffer)), -1, df['BB_Signal'] | |
) | |
# Stochastic signals | |
if 'Stochastic' in enabled_signals: | |
stoch_lower = thresholds['Stochastic_lower'] | |
stoch_upper = thresholds['Stochastic_upper'] | |
df['Stochastic_Signal'] = np.where((df['SlowK'] < stoch_lower) & (df['SlowD'] < stoch_lower), 1, 0) | |
df['Stochastic_Signal'] = np.where((df['SlowK'] > stoch_upper) & (df['SlowD'] > stoch_upper), -1, df['Stochastic_Signal']) | |
# CMF Signals | |
if 'CMF' in enabled_signals: | |
cmf_threshold = thresholds['CMF'] | |
df['CMF_Signal'] = np.where(df['CMF'] > cmf_threshold, -1, np.where(df['CMF'] < -cmf_threshold, 1, 0)) | |
# CCI Signals | |
if 'CCI' in enabled_signals: | |
cci_threshold = thresholds['CCI'] | |
df['CCI_Signal'] = np.where(df['CCI'] < -cci_threshold, 1, 0) | |
df['CCI_Signal'] = np.where(df['CCI'] > cci_threshold, -1, df['CCI_Signal']) | |
return df | |
def plot_simplified_signals(df, ticker, enabled_signals): | |
# Create a figure with improved styling | |
fig = go.Figure() | |
# Use a line chart instead of candlestick for simplicity | |
fig.add_trace(go.Scatter( | |
x=df.index, | |
y=df['Close'], | |
mode='lines', | |
name='Price', | |
line=dict(color='#26a69a', width=2), | |
opacity=0.9 | |
)) | |
# Add SMA lines | |
fig.add_trace(go.Scatter( | |
x=df.index, y=df['SMA_30'], | |
mode='lines', | |
name='SMA 30', | |
line=dict(color='#42a5f5', width=1.5, dash='dot') | |
)) | |
fig.add_trace(go.Scatter( | |
x=df.index, y=df['SMA_100'], | |
mode='lines', | |
name='SMA 100', | |
line=dict(color='#5e35b1', width=1.5, dash='dot') | |
)) | |
# Add bollinger bands with lighter appearance | |
if 'BB' in enabled_signals: | |
fig.add_trace(go.Scatter( | |
x=df.index, y=df['UpperBB'], | |
mode='lines', | |
name='Upper BB', | |
line=dict(color='rgba(250, 250, 250, 0.3)', width=1), | |
showlegend=True | |
)) | |
fig.add_trace(go.Scatter( | |
x=df.index, y=df['LowerBB'], | |
mode='lines', | |
name='Lower BB', | |
line=dict(color='rgba(250, 250, 250, 0.3)', width=1), | |
fill='tonexty', | |
fillcolor='rgba(173, 216, 230, 0.1)', | |
showlegend=True | |
)) | |
# Group signals by type to reduce legend clutter | |
buy_signals_df = pd.DataFrame(index=df.index) | |
sell_signals_df = pd.DataFrame(index=df.index) | |
signal_names = [f"{signal}_Signal" for signal in enabled_signals] | |
# Collect all buy and sell signals | |
for signal in signal_names: | |
buy_signals_df[signal] = np.where(df[signal] == 1, df['Close'], np.nan) | |
sell_signals_df[signal] = np.where(df[signal] == -1, df['Close'], np.nan) | |
# Add hover data | |
buy_hovers = [] | |
for idx in buy_signals_df.index: | |
signals_on_day = [col.split('_')[0] for col in buy_signals_df.columns | |
if not pd.isna(buy_signals_df.loc[idx, col])] | |
if signals_on_day: | |
hover_text = f"Buy Signals: {', '.join(signals_on_day)}<br>Date: {idx.strftime('%Y-%m-%d')}<br>Price: ${df.loc[idx, 'Close']:.2f}" | |
buy_hovers.append((idx, df.loc[idx, 'Close'], hover_text)) | |
sell_hovers = [] | |
for idx in sell_signals_df.index: | |
signals_on_day = [col.split('_')[0] for col in sell_signals_df.columns | |
if not pd.isna(sell_signals_df.loc[idx, col])] | |
if signals_on_day: | |
hover_text = f"Sell Signals: {', '.join(signals_on_day)}<br>Date: {idx.strftime('%Y-%m-%d')}<br>Price: ${df.loc[idx, 'Close']:.2f}" | |
sell_hovers.append((idx, df.loc[idx, 'Close'], hover_text)) | |
# Add buy signals (single trace for all buy signals) | |
if buy_hovers: | |
buy_x, buy_y, buy_texts = zip(*buy_hovers) | |
fig.add_trace(go.Scatter( | |
x=buy_x, | |
y=[y * 0.995 for y in buy_y], # Position slightly below price for visibility | |
mode='markers', | |
marker=dict(symbol='triangle-up', size=10, color='#00e676', line=dict(color='white', width=1)), | |
name='Buy Signals', | |
hoverinfo='text', | |
hovertext=buy_texts | |
)) | |
# Add sell signals (single trace for all sell signals) | |
if sell_hovers: | |
sell_x, sell_y, sell_texts = zip(*sell_hovers) | |
fig.add_trace(go.Scatter( | |
x=sell_x, | |
y=[y * 1.005 for y in sell_y], # Position slightly above price for visibility | |
mode='markers', | |
marker=dict(symbol='triangle-down', size=10, color='#ff5252', line=dict(color='white', width=1)), | |
name='Sell Signals', | |
hoverinfo='text', | |
hovertext=sell_texts | |
)) | |
# Improve the layout with larger dimensions | |
fig.update_layout( | |
title=dict( | |
text=f'{ticker}: Technical Analysis & Trading Signals', | |
font=dict(size=24, color='white'), | |
x=0.5 | |
), | |
xaxis=dict( | |
title='Date', | |
gridcolor='rgba(255, 255, 255, 0.1)', | |
linecolor='rgba(255, 255, 255, 0.2)' | |
), | |
yaxis=dict( | |
title='Price', | |
side='right', | |
gridcolor='rgba(255, 255, 255, 0.1)', | |
linecolor='rgba(255, 255, 255, 0.2)', | |
tickprefix='$' | |
), | |
plot_bgcolor='#1e1e1e', | |
paper_bgcolor='#1e1e1e', | |
font=dict(color='white'), | |
hovermode='closest', | |
legend=dict( | |
bgcolor='rgba(30, 30, 30, 0.8)', | |
bordercolor='rgba(255, 255, 255, 0.2)', | |
borderwidth=1, | |
font=dict(color='white', size=10), | |
orientation='h', | |
yanchor='bottom', | |
y=1.02, | |
xanchor='center', | |
x=0.5 | |
), | |
margin=dict(l=50, r=50, b=100, t=100, pad=4), | |
height=800, # Increased height | |
width=1200 # Increased width | |
) | |
# Add range selector for better time navigation | |
fig.update_xaxes( | |
rangeslider_visible=True, | |
rangeselector=dict( | |
buttons=list([ | |
dict(count=1, label="1m", step="month", stepmode="backward"), | |
dict(count=3, label="3m", step="month", stepmode="backward"), | |
dict(count=6, label="6m", step="month", stepmode="backward"), | |
dict(count=1, label="YTD", step="year", stepmode="todate"), | |
dict(count=1, label="1y", step="year", stepmode="backward"), | |
dict(step="all") | |
]), | |
bgcolor='rgba(30, 30, 30, 0.8)', | |
activecolor='#536dfe', | |
font=dict(color='white') | |
) | |
) | |
return fig | |
def stock_analysis(ticker, start_date, end_date, | |
sensitivity, # New simplified parameter | |
use_sma, use_macd, use_rsi, use_bb, | |
use_stoch, use_cmf, use_cci): | |
try: | |
# Download stock data from Yahoo Finance | |
df = yf.download(ticker, start=start_date, end=end_date) | |
# Check if data was retrieved | |
if df.empty: | |
fig = go.Figure() | |
fig.add_annotation( | |
text="No data found for this ticker and date range", | |
xref="paper", yref="paper", | |
x=0.5, y=0.5, | |
showarrow=False, | |
font=dict(color="white", size=16) | |
) | |
fig.update_layout( | |
plot_bgcolor='#1e1e1e', | |
paper_bgcolor='#1e1e1e', | |
height=800, | |
width=1200 | |
) | |
return fig | |
# If the DataFrame has a MultiIndex for columns, handle it | |
if isinstance(df.columns, pd.MultiIndex): | |
df.columns = df.columns.droplevel(1) if len(df.columns.levels) > 1 else df.columns | |
# Create list of enabled signals | |
enabled_signals = [] | |
if use_sma: enabled_signals.append('SMA') | |
if use_macd: enabled_signals.append('MACD') | |
if use_rsi: enabled_signals.append('RSI') | |
if use_bb: enabled_signals.append('BB') | |
if use_stoch: enabled_signals.append('Stochastic') | |
if use_cmf: enabled_signals.append('CMF') | |
if use_cci: enabled_signals.append('CCI') | |
# If no signals are enabled, enable all by default | |
if not enabled_signals: | |
enabled_signals = ['SMA', 'MACD', 'RSI', 'BB', 'Stochastic', 'CMF', 'CCI'] | |
# Get thresholds from sensitivity | |
thresholds = adjust_thresholds_by_sensitivity(sensitivity) | |
# Generate signals | |
df = generate_trading_signals(df, thresholds, enabled_signals) | |
# Last 360 days for plotting (or all data if less than 360 days) | |
df_last_360 = df.tail(min(360, len(df))) | |
# Plot simplified signals | |
fig = plot_simplified_signals(df_last_360, ticker, enabled_signals) | |
return fig | |
except Exception as e: | |
# Create error figure | |
fig = go.Figure() | |
fig.add_annotation( | |
text=f"Error: {str(e)}", | |
xref="paper", yref="paper", | |
x=0.5, y=0.5, | |
showarrow=False, | |
font=dict(color="#ff5252", size=16) | |
) | |
fig.update_layout( | |
plot_bgcolor='#1e1e1e', | |
paper_bgcolor='#1e1e1e', | |
font=dict(color='white'), | |
height=800, | |
width=1200 | |
) | |
return fig | |
# Define Gradio interface with improved styling | |
custom_theme = gr.themes.Monochrome( | |
primary_hue="blue", | |
secondary_hue="purple", | |
neutral_hue="gray", | |
radius_size=gr.themes.sizes.radius_sm, | |
font=[gr.themes.GoogleFont("Inter"), "system-ui", "sans-serif"], | |
) | |
with gr.Blocks(theme=custom_theme) as demo: | |
gr.Markdown("# Technical Analysis") | |
gr.Markdown("This app helps you analyze stocks with technical indicators and generates trading signals.") | |
with gr.Row(): | |
with gr.Column(scale=1): | |
ticker_input = gr.Textbox( | |
label="Stock Ticker Symbol", | |
placeholder="e.g., AAPL, NVDA, MSFT", | |
value="NVDA" | |
) | |
start_date_input = gr.Textbox( | |
label="Start Date", | |
placeholder="YYYY-MM-DD", | |
value="2022-01-01" | |
) | |
end_date_input = gr.Textbox( | |
label="End Date", | |
placeholder="YYYY-MM-DD", | |
value="2026-01-01" # Updated to current date | |
) | |
gr.Markdown("### Choose Indicators") | |
with gr.Row(): | |
use_sma = gr.Checkbox(label="SMA", value=True) | |
use_macd = gr.Checkbox(label="MACD", value=True) | |
use_rsi = gr.Checkbox(label="RSI", value=True) | |
use_bb = gr.Checkbox(label="Bollinger", value=True) | |
use_stoch = gr.Checkbox(label="Stochastic", value=True) | |
use_cmf = gr.Checkbox(label="CMF", value=True) | |
use_cci = gr.Checkbox(label="CCI", value=True) | |
gr.Markdown("### Signal Sensitivity") | |
with gr.Row(): | |
sensitivity = gr.Slider( | |
label="Signal Sensitivity", | |
minimum=1, | |
maximum=10, | |
step=1, | |
value=5, | |
info="1 = (sensitive), 10 = (strict)" | |
) | |
# Create a submit button with styling | |
button = gr.Button("Analyze Stock", variant="primary") | |
# Output: Signals plot with increased height | |
signals_output = gr.Plot(label="Technical Analysis & Trading Signals") | |
# Link button to function with updated parameters | |
button.click( | |
stock_analysis, | |
inputs=[ | |
ticker_input, start_date_input, end_date_input, | |
sensitivity, # Single threshold parameter | |
use_sma, use_macd, use_rsi, use_bb, | |
use_stoch, use_cmf, use_cci | |
], | |
outputs=[signals_output] | |
) | |
gr.Markdown(""" | |
## 📈 Trading Signals Legend | |
- **Green Triangle Up (▲)** indicates Buy signals | |
- **Red Triangle Down (▼)** indicates Sell signals | |
- Hover over signals to see which indicators triggered them | |
## 🔍 Signal Sensitivity Explained | |
- **Lower values (1-3)**: More frequent signals, good for short-term trading | |
- **Medium values (4-6)**: Balanced approach, moderate number of signals | |
- **Higher values (7-10)**: Fewer but potentially stronger signals, good for long-term investors | |
## 🛠️ Trading Strategy Tips | |
- **Day Trading**: Use lower sensitivity with multiple indicators | |
- **Swing Trading**: Use medium sensitivity with 3-4 indicators | |
- **Long-term Investing**: Use higher sensitivity focusing on trend indicators | |
- **Combine**: Using multiple indicators helps confirm signals and reduce false positives | |
""") | |
# Launch the interface | |
demo.launch() |