import gradio as gr import tensorflow as tf import numpy as np model = tf.keras.models.load_model("hf://JaviSwift/cifar10_simple") def predict_image(img): """ Makes a prediction of the image descripton """ img = tf.image.resize(img, (32, 32)) img = img / 255.0 img = np.expand_dims(img, axis=0) prediction = model.predict(img) predicted_class = np.argmax(prediction) class_names = ['airplane', 'automobile', 'bird', 'cat', 'deer', 'dog', 'frog', 'horse', 'ship', 'truck'] predicted_label = class_names[predicted_class] return predicted_label iface = gr.Interface( fn=predict_image, inputs=gr.Image(label="Upload an image"), outputs=gr.Label(label="Result"), title="Image description predictor", description="Upload an image and it will make a description of the object" ) iface.launch()