# Step 2: Install the latest version of Gradio !pip install gradio # Step 3: Verify the installation import gradio as gr print("Gradio version:", gr.__version__) # Step 4: Define the Gradio interface using the latest API from transformers import AutoTokenizer, AutoModelForSeq2SeqLM def summarize(text): tokenizer = AutoTokenizer.from_pretrained("facebook/bart-large-cnn") model = AutoModelForSeq2SeqLM.from_pretrained("facebook/bart-large-cnn") inputs = tokenizer.encode("summarize: " + text, return_tensors="pt", max_length=1024, truncation=True) summary_ids = model.generate(inputs, max_length=150, min_length=40, length_penalty=2.0, num_beams=4, early_stopping=True) return tokenizer.decode(summary_ids[0], skip_special_tokens=True) iface1 = gr.Interface(fn=summarize, inputs="textbox", outputs="textbox", title="Text Summarizer") iface2 = gr.Interface(fn=summarize, inputs="textbox", outputs="textbox", title="Text Summarizer") # Combine interfaces using the latest Gradio Blocks API with gr.Blocks() as demo: with gr.Row(): iface1.render() demo.launch()