File size: 7,910 Bytes
ef02bce
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
{
 "cells": [
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "This is used to generate small peices of data used by the main app. **NOT** the main data cleaning code. That can be found in the data_cleaning folder and notebook with the same name."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 2,
   "metadata": {},
   "outputs": [],
   "source": [
    "airport_coordinates = [\n",
    "    (\"ATL\", 33.640, -84.419), \n",
    "    (\"DFW\", 32.897, -97.040), \n",
    "    (\"DEN\", 39.849, -104.673), \n",
    "    (\"ORD\", 41.978, -87.904), \n",
    "    (\"LAX\", 33.942, -118.410), \n",
    "    (\"JFK\", 42.365, -71.010), \n",
    "    (\"LAS\", 36.083, -115.148), \n",
    "    (\"MCO\", 28.424, -81.310), \n",
    "    (\"MIA\", 25.795, -80.279), \n",
    "    (\"CLT\", 35.213, -80.943), \n",
    "    (\"SEA\", 47.443, -122.301), \n",
    "    (\"PHX\", 33.435, -112.010), \n",
    "    (\"EWR\", 40.689, -74.174), \n",
    "    (\"SFO\", 37.615, -122.389), \n",
    "    (\"IAH\", 29.993, -95.341), \n",
    "    (\"BOS\", 42.365, -71.010), \n",
    "    (\"FLL\", 26.074, -80.150), \n",
    "    (\"MSP\", 44.885, -93.214), \n",
    "    (\"LGA\", 40.776, -73.874), \n",
    "    (\"DTW\", 42.213, -83.352), \n",
    "    (\"PHL\", 39.872, -75.243), \n",
    "    (\"SLC\", 40.791, -111.976), \n",
    "    (\"DCA\", 38.851, -77.040), \n",
    "    (\"SAN\", 32.731, -117.197), \n",
    "    (\"BWI\", 39.177, -76.668), \n",
    "    (\"TPA\", 27.979, -82.539), \n",
    "    (\"AUS\", 30.195, -97.666), \n",
    "    (\"IAD\", 38.952, 77.458), \n",
    "    (\"BNA\", 36.131, -86.668), \n",
    "    (\"MDW\", 41.786, 87.752), \n",
    "    ]"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 4,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "[('ATL', 33.64, -84.419), ('DFW', 32.897, -97.04), ('DEN', 39.849, -104.673), ('ORD', 41.978, -87.904), ('LAX', 33.942, -118.41), ('JFK', 42.365, -71.01), ('LAS', 36.083, -115.148), ('MCO', 28.424, -81.31), ('MIA', 25.795, -80.279), ('CLT', 35.213, -80.943), ('SEA', 47.443, -122.301), ('PHX', 33.435, -112.01), ('EWR', 40.689, -74.174), ('SFO', 37.615, -122.389), ('IAH', 29.993, -95.341), ('BOS', 42.365, -71.01), ('FLL', 26.074, -80.15), ('MSP', 44.885, -93.214), ('LGA', 40.776, -73.874), ('DTW', 42.213, -83.352), ('PHL', 39.872, -75.243), ('SLC', 40.791, -111.976), ('DCA', 38.851, -77.04), ('SAN', 32.731, -117.197), ('BWI', 39.177, -76.668), ('TPA', 27.979, -82.539), ('AUS', 30.195, -97.666), ('IAD', 38.952, 77.458), ('BNA', 36.131, -86.668), ('MDW', 41.786, 87.752)]\n"
     ]
    }
   ],
   "source": [
    "import pickle\n",
    "import os\n",
    "\n",
    "airport_codes_path = os.path.join('data', 'airport_coordinates.pickle')\n",
    "\n",
    "with open(airport_codes_path, 'wb') as f:\n",
    "    pickle.dump(airport_coordinates, f)\n",
    "\n",
    "    # Deserialize the data using pickle.load()\n",
    "with open(airport_codes_path, 'rb') as f:\n",
    "    loaded_data = pickle.load(f)\n",
    "\n",
    "# Print the loaded data\n",
    "print(loaded_data)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 5,
   "metadata": {},
   "outputs": [],
   "source": [
    "airport_codes = [\"ATL\", \"DFW\", \"DEN\", \"ORD\", \"LAX\", \"JFK\", \"LAS\", \"MCO\", \"MIA\", \"CLT\", \"SEA\", \"PHX\", \"EWR\", \"SFO\", \"IAH\", \"BOS\", \"FLL\", \"MSP\", \"LGA\", \"DTW\", \"PHL\", \"SLC\", \"DCA\", \"SAN\", \"BWI\", \"TPA\", \"AUS\", \"IAD\", \"BNA\", \"MDW\"]"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 6,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "['ATL', 'DFW', 'DEN', 'ORD', 'LAX', 'JFK', 'LAS', 'MCO', 'MIA', 'CLT', 'SEA', 'PHX', 'EWR', 'SFO', 'IAH', 'BOS', 'FLL', 'MSP', 'LGA', 'DTW', 'PHL', 'SLC', 'DCA', 'SAN', 'BWI', 'TPA', 'AUS', 'IAD', 'BNA', 'MDW']\n"
     ]
    }
   ],
   "source": [
    "airport_codes_path = os.path.join('data', 'airport_codes.pickle')\n",
    "\n",
    "with open(airport_codes_path, 'wb') as f:\n",
    "    pickle.dump(airport_codes, f)\n",
    "\n",
    "    # Deserialize the data using pickle.load()\n",
    "with open(airport_codes_path, 'rb') as f:\n",
    "    loaded_data = pickle.load(f)\n",
    "\n",
    "# Print the loaded data\n",
    "print(loaded_data)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 18,
   "metadata": {},
   "outputs": [],
   "source": [
    "airport_timezones = [\n",
    "    (\"ATL\", \"America/New_York\"),\n",
    "    (\"DFW\", \"America/Chicago\"),\n",
    "    (\"DEN\", \"America/Denver\"),\n",
    "    (\"ORD\", \"America/Chicago\"),\n",
    "    (\"LAX\", \"America/Los_Angeles\"),\n",
    "    (\"JFK\", \"America/New_York\"),\n",
    "    (\"LAS\", \"America/Los_Angeles\"),\n",
    "    (\"MCO\", \"America/New_York\"),\n",
    "    (\"MIA\", \"America/New_York\"),\n",
    "    (\"CLT\", \"America/New_York\"),\n",
    "    (\"SEA\", \"America/Los_Angeles\"),\n",
    "    (\"PHX\", \"America/Phoenix\"),\n",
    "    (\"EWR\", \"America/New_York\"),\n",
    "    (\"SFO\", \"America/Los_Angeles\"),\n",
    "    (\"IAH\", \"America/Chicago\"),\n",
    "    (\"BOS\", \"America/New_York\"),\n",
    "    (\"FLL\", \"America/New_York\"),\n",
    "    (\"MSP\", \"America/Chicago\"),\n",
    "    (\"LGA\", \"America/New_York\"),\n",
    "    (\"DTW\", \"America/Detroit\"),\n",
    "    (\"PHL\", \"America/New_York\"),\n",
    "    (\"SLC\", \"America/Denver\"),\n",
    "    (\"DCA\", \"America/New_York\"),\n",
    "    (\"SAN\", \"America/Los_Angeles\"),\n",
    "    (\"BWI\", \"America/New_York\"),\n",
    "    (\"TPA\", \"America/New_York\"),\n",
    "    (\"AUS\", \"America/Chicago\"),\n",
    "    (\"IAD\", \"America/New_York\"),\n",
    "    (\"BNA\", \"America/Chicago\"),\n",
    "    (\"MDW\", \"America/Chicago\"),\n",
    "    ]\n",
    "    "
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 19,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "[('ATL', 'America/New_York'), ('DFW', 'America/Chicago'), ('DEN', 'America/Denver'), ('ORD', 'America/Chicago'), ('LAX', 'America/Los_Angeles'), ('JFK', 'America/New_York'), ('LAS', 'America/Los_Angeles'), ('MCO', 'America/New_York'), ('MIA', 'America/New_York'), ('CLT', 'America/New_York'), ('SEA', 'America/Los_Angeles'), ('PHX', 'America/Phoenix'), ('EWR', 'America/New_York'), ('SFO', 'America/Los_Angeles'), ('IAH', 'America/Chicago'), ('BOS', 'America/New_York'), ('FLL', 'America/New_York'), ('MSP', 'America/Chicago'), ('LGA', 'America/New_York'), ('DTW', 'America/Detroit'), ('PHL', 'America/New_York'), ('SLC', 'America/Denver'), ('DCA', 'America/New_York'), ('SAN', 'America/Los_Angeles'), ('BWI', 'America/New_York'), ('TPA', 'America/New_York'), ('AUS', 'America/Chicago'), ('IAD', 'America/New_York'), ('BNA', 'America/Chicago'), ('MDW', 'America/Chicago')]\n"
     ]
    }
   ],
   "source": [
    "airport_timezones_path = os.path.join('data', 'airport_timezones.pickle')\n",
    "\n",
    "with open(airport_timezones_path, 'wb') as f:\n",
    "    pickle.dump(airport_timezones, f)\n",
    "\n",
    "    # Deserialize the data using pickle.load()\n",
    "with open(airport_timezones_path, 'rb') as f:\n",
    "    loaded_data = pickle.load(f)\n",
    "\n",
    "# Print the loaded data\n",
    "print(loaded_data)"
   ]
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.11.9"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 2
}