Update metrics.py
Browse files- metrics.py +101 -44
metrics.py
CHANGED
@@ -1,59 +1,116 @@
|
|
1 |
# metrics.py
|
2 |
-
import
|
3 |
-
from
|
4 |
-
from
|
|
|
5 |
|
6 |
-
#
|
7 |
-
|
8 |
|
9 |
-
|
10 |
-
emotion_classifier = pipeline("text-classification", model="bhadresh-savani/distilbert-base-uncased-emotion", top_k=None)
|
11 |
-
|
12 |
-
def compute_semantic_similarity(original_comment, paraphrased_comment):
|
13 |
"""
|
14 |
-
Compute
|
15 |
-
Returns a score between 0 and 1
|
16 |
"""
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
|
|
|
|
|
|
|
|
21 |
|
22 |
-
def compute_emotion_shift(
|
23 |
"""
|
24 |
-
Compute the shift
|
25 |
-
Returns the
|
26 |
"""
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
32 |
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
|
|
37 |
|
38 |
-
|
39 |
-
|
40 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
41 |
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
47 |
|
48 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
49 |
|
50 |
-
def
|
51 |
"""
|
52 |
-
Compute
|
53 |
-
Returns a score between 0 and 1
|
54 |
"""
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
# metrics.py
|
2 |
+
import nltk
|
3 |
+
from nltk.translate.bleu_score import sentence_bleu
|
4 |
+
from rouge_score import rouge_scorer
|
5 |
+
from model_loader import metrics_models
|
6 |
|
7 |
+
# Download required NLTK data
|
8 |
+
nltk.download('punkt')
|
9 |
|
10 |
+
def compute_semantic_similarity(original, paraphrased):
|
|
|
|
|
|
|
11 |
"""
|
12 |
+
Compute semantic similarity between the original and paraphrased comment using Sentence-BERT.
|
13 |
+
Returns a similarity score between 0 and 1.
|
14 |
"""
|
15 |
+
try:
|
16 |
+
sentence_bert = metrics_models.load_sentence_bert()
|
17 |
+
embeddings = sentence_bert.encode([original, paraphrased])
|
18 |
+
similarity = float(embeddings[0] @ embeddings[1].T)
|
19 |
+
return round(similarity, 2)
|
20 |
+
except Exception as e:
|
21 |
+
print(f"Error computing semantic similarity: {str(e)}")
|
22 |
+
return None
|
23 |
|
24 |
+
def compute_emotion_shift(original, paraphrased):
|
25 |
"""
|
26 |
+
Compute the emotion shift between the original and paraphrased comment.
|
27 |
+
Returns the original emotion, paraphrased emotion, and whether the shift is positive.
|
28 |
"""
|
29 |
+
try:
|
30 |
+
emotion_classifier = metrics_models.load_emotion_classifier()
|
31 |
+
original_emotions = emotion_classifier(original)
|
32 |
+
paraphrased_emotions = emotion_classifier(paraphrased)
|
33 |
+
|
34 |
+
# Get the top emotion for each
|
35 |
+
original_emotion = max(original_emotions[0], key=lambda x: x['score'])['label']
|
36 |
+
paraphrased_emotion = max(paraphrased_emotions[0], key=lambda x: x['score'])['label']
|
37 |
+
|
38 |
+
# Define negative and positive emotions
|
39 |
+
negative_emotions = ['anger', 'sadness', 'fear']
|
40 |
+
positive_emotions = ['joy', 'love', 'surprise']
|
41 |
|
42 |
+
# Determine if the shift is positive
|
43 |
+
emotion_shift_positive = (
|
44 |
+
(original_emotion in negative_emotions and paraphrased_emotion in positive_emotions) or
|
45 |
+
(original_emotion in negative_emotions and paraphrased_emotion not in negative_emotions)
|
46 |
+
)
|
47 |
|
48 |
+
return original_emotion, paraphrased_emotion, emotion_shift_positive
|
49 |
+
except Exception as e:
|
50 |
+
print(f"Error computing emotion shift: {str(e)}")
|
51 |
+
return None, None, None
|
52 |
+
|
53 |
+
def compute_empathy_score(paraphrased):
|
54 |
+
"""
|
55 |
+
Compute an empathy score for the paraphrased comment (placeholder).
|
56 |
+
Returns a score between 0 and 1.
|
57 |
+
"""
|
58 |
+
try:
|
59 |
+
# Placeholder: Compute empathy based on word presence (e.g., "sorry", "understand")
|
60 |
+
empathy_words = ["sorry", "understand", "care", "help", "support"]
|
61 |
+
words = paraphrased.lower().split()
|
62 |
+
empathy_count = sum(1 for word in words if word in empathy_words)
|
63 |
+
score = empathy_count / len(words) if words else 0
|
64 |
+
return round(score, 2)
|
65 |
+
except Exception as e:
|
66 |
+
print(f"Error computing empathy score: {str(e)}")
|
67 |
+
return None
|
68 |
|
69 |
+
def compute_bleu_score(original, paraphrased):
|
70 |
+
"""
|
71 |
+
Compute the BLEU score between the original and paraphrased comment.
|
72 |
+
Returns a score between 0 and 1.
|
73 |
+
"""
|
74 |
+
try:
|
75 |
+
reference = [nltk.word_tokenize(original.lower())]
|
76 |
+
candidate = nltk.word_tokenize(paraphrased.lower())
|
77 |
+
score = sentence_bleu(reference, candidate, weights=(0.25, 0.25, 0.25, 0.25))
|
78 |
+
return round(score, 2)
|
79 |
+
except Exception as e:
|
80 |
+
print(f"Error computing BLEU score: {str(e)}")
|
81 |
+
return None
|
82 |
|
83 |
+
def compute_rouge_score(original, paraphrased):
|
84 |
+
"""
|
85 |
+
Compute ROUGE scores (ROUGE-1, ROUGE-2, ROUGE-L) between the original and paraphrased comment.
|
86 |
+
Returns a dictionary with ROUGE scores.
|
87 |
+
"""
|
88 |
+
try:
|
89 |
+
scorer = rouge_scorer.RougeScorer(['rouge1', 'rouge2', 'rougeL'], use_stemmer=True)
|
90 |
+
scores = scorer.score(original, paraphrased)
|
91 |
+
return {
|
92 |
+
'rouge1': round(scores['rouge1'].fmeasure, 2),
|
93 |
+
'rouge2': round(scores['rouge2'].fmeasure, 2),
|
94 |
+
'rougeL': round(scores['rougeL'].fmeasure, 2)
|
95 |
+
}
|
96 |
+
except Exception as e:
|
97 |
+
print(f"Error computing ROUGE scores: {str(e)}")
|
98 |
+
return None
|
99 |
|
100 |
+
def compute_entailment_score(original, paraphrased):
|
101 |
"""
|
102 |
+
Compute the entailment score to check factual consistency using an NLI model.
|
103 |
+
Returns a score between 0 and 1.
|
104 |
"""
|
105 |
+
try:
|
106 |
+
nli_classifier = metrics_models.load_nli_classifier()
|
107 |
+
result = nli_classifier(
|
108 |
+
original,
|
109 |
+
paraphrased,
|
110 |
+
candidate_labels=["entailment", "contradiction", "neutral"]
|
111 |
+
)
|
112 |
+
entailment_score = next(score for label, score in zip(result['labels'], result['scores']) if label == "entailment")
|
113 |
+
return round(entailment_score, 2)
|
114 |
+
except Exception as e:
|
115 |
+
print(f"Error computing entailment score: {str(e)}")
|
116 |
+
return None
|