Update classifier.py
Browse files- classifier.py +42 -79
classifier.py
CHANGED
@@ -4,7 +4,14 @@ import time
|
|
4 |
from model_loader import classifier_model
|
5 |
from paraphraser import paraphrase_comment
|
6 |
from metrics import compute_semantic_similarity, compute_empathy_score, compute_bias_score, compute_hallucination_score
|
|
|
|
|
7 |
|
|
|
|
|
|
|
|
|
|
|
8 |
def compute_reward_scores(original, paraphrased):
|
9 |
"""
|
10 |
Compute all reward scores for a paraphrase.
|
@@ -43,88 +50,44 @@ def compute_reward_scores(original, paraphrased):
|
|
43 |
|
44 |
def classify_toxic_comment(comment):
|
45 |
"""
|
46 |
-
Classify a comment
|
47 |
-
|
48 |
-
Returns the prediction label, confidence, color, toxicity score, bias score, paraphrased comment (if applicable), and its metrics.
|
49 |
"""
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
# Run inference
|
65 |
-
with torch.no_grad():
|
66 |
-
outputs = model(**inputs)
|
67 |
-
logits = outputs.logits
|
68 |
-
|
69 |
-
# Get the predicted class (0 = non-toxic, 1 = toxic)
|
70 |
-
predicted_class = torch.argmax(logits, dim=1).item()
|
71 |
-
label = "Toxic" if predicted_class == 1 else "Non-Toxic"
|
72 |
-
confidence = torch.softmax(logits, dim=1)[0][predicted_class].item()
|
73 |
-
label_color = "red" if label == "Toxic" else "green"
|
74 |
-
|
75 |
-
# Compute Toxicity Score (approximated as the probability of the toxic class)
|
76 |
-
toxicity_score = torch.softmax(logits, dim=1)[0][1].item()
|
77 |
-
toxicity_score = round(toxicity_score, 2)
|
78 |
-
|
79 |
-
# Simulate Bias Score (placeholder)
|
80 |
-
bias_score = 0.01 if label == "Non-Toxic" else 0.15
|
81 |
-
bias_score = round(bias_score, 2)
|
82 |
-
print(f"Classification took {time.time() - start_classification:.2f} seconds")
|
83 |
-
|
84 |
-
# If the comment is toxic, paraphrase it and compute essential metrics
|
85 |
-
paraphrased_comment = None
|
86 |
-
paraphrased_prediction = None
|
87 |
-
paraphrased_confidence = None
|
88 |
-
paraphrased_color = None
|
89 |
-
paraphrased_toxicity_score = None
|
90 |
-
paraphrased_bias_score = None
|
91 |
-
semantic_similarity = None
|
92 |
-
empathy_score = None
|
93 |
-
|
94 |
-
if label == "Toxic":
|
95 |
-
# Paraphrase the comment
|
96 |
-
start_paraphrase = time.time()
|
97 |
-
paraphrased_comment = paraphrase_comment(comment)
|
98 |
-
print(f"Paraphrasing took {time.time() - start_paraphrase:.2f} seconds")
|
99 |
-
|
100 |
-
# Re-evaluate the paraphrased comment
|
101 |
-
start_reclassification = time.time()
|
102 |
-
paraphrased_inputs = tokenizer(paraphrased_comment, return_tensors="pt", truncation=True, padding=True, max_length=512)
|
103 |
with torch.no_grad():
|
104 |
-
|
105 |
-
|
|
|
106 |
|
107 |
-
|
108 |
-
|
109 |
-
paraphrased_confidence = torch.softmax(paraphrased_logits, dim=1)[0][paraphrased_predicted_class].item()
|
110 |
-
paraphrased_color = "red" if paraphrased_label == "Toxic" else "green"
|
111 |
-
paraphrased_toxicity_score = torch.softmax(paraphrased_logits, dim=1)[0][1].item()
|
112 |
-
paraphrased_toxicity_score = round(paraphrased_toxicity_score, 2)
|
113 |
-
paraphrased_bias_score = 0.01 if paraphrased_label == "Non-Toxic" else 0.15 # Placeholder
|
114 |
-
paraphrased_bias_score = round(paraphrased_bias_score, 2)
|
115 |
-
print(f"Reclassification of paraphrased comment took {time.time() - start_reclassification:.2f} seconds")
|
116 |
|
117 |
-
# Compute
|
118 |
-
|
119 |
-
|
120 |
-
empathy_score = compute_empathy_score(paraphrased_comment)
|
121 |
-
print(f"Metrics computation took {time.time() - start_metrics:.2f} seconds")
|
122 |
|
123 |
-
|
|
|
124 |
|
125 |
-
|
126 |
-
f"
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
|
|
|
|
|
|
|
4 |
from model_loader import classifier_model
|
5 |
from paraphraser import paraphrase_comment
|
6 |
from metrics import compute_semantic_similarity, compute_empathy_score, compute_bias_score, compute_hallucination_score
|
7 |
+
from metrics import compute_reward_scores
|
8 |
+
import numpy as np
|
9 |
|
10 |
+
def softmax(logits):
|
11 |
+
exp_logits = np.exp(logits - np.max(logits))
|
12 |
+
return exp_logits / exp_logits.sum()
|
13 |
+
|
14 |
+
|
15 |
def compute_reward_scores(original, paraphrased):
|
16 |
"""
|
17 |
Compute all reward scores for a paraphrase.
|
|
|
50 |
|
51 |
def classify_toxic_comment(comment):
|
52 |
"""
|
53 |
+
Classify a comment for toxicity and compute additional metrics.
|
54 |
+
Returns a dictionary with classification results and scores.
|
|
|
55 |
"""
|
56 |
+
try:
|
57 |
+
start_time = time.time()
|
58 |
+
print("Starting classification...")
|
59 |
+
|
60 |
+
# Tokenize the comment
|
61 |
+
inputs = classifier_model.tokenizer(
|
62 |
+
comment,
|
63 |
+
return_tensors="pt",
|
64 |
+
truncation=True,
|
65 |
+
padding=True,
|
66 |
+
max_length=512
|
67 |
+
).to(classifier_model.device)
|
68 |
+
|
69 |
+
# Classify using the toxicity classifier
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
70 |
with torch.no_grad():
|
71 |
+
outputs = classifier_model.model(**inputs)
|
72 |
+
logits = outputs.logits.cpu().numpy()[0]
|
73 |
+
probs = softmax(logits)
|
74 |
|
75 |
+
toxicity = probs[1] # Assuming label 1 is toxic
|
76 |
+
print(f"Classification took {time.time() - start_time:.2f} seconds")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
77 |
|
78 |
+
# Compute additional metrics (empathy, bias, hallucination, reward)
|
79 |
+
scores = compute_reward_scores(comment, comment) # Use comment as both original and paraphrase for classification
|
80 |
+
scores["toxicity"] = toxicity # Override toxicity with classifier result
|
|
|
|
|
81 |
|
82 |
+
print(f"Total processing time: {time.time() - start_time:.2f} seconds")
|
83 |
+
return scores
|
84 |
|
85 |
+
except Exception as e:
|
86 |
+
print(f"Error during classification: {str(e)}")
|
87 |
+
return {
|
88 |
+
"empathy": 0.0,
|
89 |
+
"toxicity": 1.0,
|
90 |
+
"bias": 1.0,
|
91 |
+
"hallucination": 1.0,
|
92 |
+
"reward": 0.0
|
93 |
+
}
|