File size: 10,276 Bytes
c49cebe 6f0e9db c49cebe 5289046 c49cebe 6f0e9db c49cebe 6f0e9db 5289046 6f0e9db 5289046 6f0e9db c49cebe 5289046 6f0e9db c49cebe 6f0e9db c49cebe 6f0e9db c49cebe 6f0e9db c49cebe 6f0e9db c49cebe |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 |
# app.py
import gradio as gr
from classifier import classify_toxic_comment
# Clear function for resetting the UI
def clear_inputs():
return "", 0, "", [], "", "", "", "", 0, "", "", "", "", ""
# Custom CSS for styling
custom_css = """
.gr-button-primary {
background-color: #4CAF50 !important;
color: white !important;
}
.gr-button-secondary {
background-color: #f44336 !important;
color: white !important;
}
.gr-textbox textarea {
border: 2px solid #2196F3 !important;
border-radius: 8px !important;
}
.gr-slider {
background-color: #e0e0e0 !important;
border-radius: 10px !important;
}
"""
# Main UI function
with gr.Blocks(theme=gr.themes.Soft(), css=custom_css) as demo:
gr.Markdown(
"""
# Toxic Comment Classifier
Enter a comment below to check if it's toxic or non-toxic. This app uses a fine-tuned XLM-RoBERTa model to classify comments as part of a four-stage pipeline for automated toxic comment moderation.
"""
)
with gr.Row():
with gr.Column(scale=3):
comment_input = gr.Textbox(
label="Your Comment",
placeholder="Type your comment here...",
lines=3,
max_lines=5
)
with gr.Column(scale=1):
submit_btn = gr.Button("Classify Comment", variant="primary")
clear_btn = gr.Button("Clear", variant="secondary")
gr.Examples(
examples=[
"I love this community, it's so supportive!",
"You are an idiot and should leave this platform.",
"This app is amazing, great work!"
],
inputs=comment_input,
label="Try these examples:"
)
with gr.Row():
with gr.Column(scale=2):
prediction_output = gr.Textbox(label="Prediction", placeholder="Prediction will appear here...")
toxicity_output = gr.Textbox(label="Toxicity Score", placeholder="Toxicity score will appear here...")
bias_output = gr.Textbox(label="Bias Score", placeholder="Bias score will appear here...")
with gr.Column(scale=1):
confidence_output = gr.Slider(
label="Confidence",
minimum=0,
maximum=1,
value=0,
interactive=False
)
with gr.Row():
label_display = gr.HTML()
threshold_display = gr.HTML()
with gr.Accordion("Paraphrased Output (if Toxic)", open=False):
paraphrased_comment_output = gr.Textbox(label="Paraphrased Comment", placeholder="Paraphrased comment will appear here if the input is toxic...")
paraphrased_prediction_output = gr.Textbox(label="Paraphrased Prediction", placeholder="Prediction will appear here...")
paraphrased_toxicity_output = gr.Textbox(label="Paraphrased Toxicity Score", placeholder="Toxicity score will appear here...")
paraphrased_bias_output = gr.Textbox(label="Paraphrased Bias Score", placeholder="Bias score will appear here...")
paraphrased_confidence_output = gr.Slider(
label="Paraphrased Confidence",
minimum=0,
maximum=1,
value=0,
interactive=False
)
paraphrased_label_display = gr.HTML()
semantic_similarity_output = gr.Textbox(label="Semantic Similarity", placeholder="Semantic similarity score will appear here...")
emotion_shift_output = gr.Textbox(label="Emotion Shift", placeholder="Emotion shift will appear here...")
empathy_score_output = gr.Textbox(label="Empathy Score", placeholder="Empathy score will appear here...")
with gr.Accordion("Prediction History", open=False):
history_output = gr.JSON(label="Previous Predictions")
with gr.Accordion("Provide Feedback", open=False):
feedback_input = gr.Radio(
choices=["Yes, the prediction was correct", "No, the prediction was incorrect"],
label="Was this prediction correct?"
)
feedback_comment = gr.Textbox(label="Additional Comments (optional)", placeholder="Let us know your thoughts...")
feedback_submit = gr.Button("Submit Feedback")
feedback_output = gr.Textbox(label="Feedback Status")
def handle_classification(comment, history):
if history is None:
history = []
(
prediction, confidence, color, toxicity_score, bias_score,
paraphrased_comment, paraphrased_prediction, paraphrased_confidence,
paraphrased_color, paraphrased_toxicity_score, paraphrased_bias_score,
semantic_similarity, emotion_shift, empathy_score
) = classify_toxic_comment(comment)
history.append({
"comment": comment,
"prediction": prediction,
"confidence": confidence,
"toxicity_score": toxicity_score,
"bias_score": bias_score,
"paraphrased_comment": paraphrased_comment,
"paraphrased_prediction": paraphrased_prediction,
"paraphrased_confidence": paraphrased_confidence,
"paraphrased_toxicity_score": paraphrased_toxicity_score,
"paraphrased_bias_score": paraphrased_bias_score,
"semantic_similarity": semantic_similarity,
"emotion_shift": emotion_shift,
"empathy_score": empathy_score
})
threshold_message = "High Confidence" if confidence >= 0.7 else "Low Confidence"
threshold_color = "green" if confidence >= 0.7 else "orange"
toxicity_display = f"{toxicity_score} (Scale: 0 to 1, lower is less toxic)" if toxicity_score is not None else "N/A"
bias_display = f"{bias_score} (Scale: 0 to 1, lower indicates less bias)" if bias_score is not None else "N/A"
paraphrased_comment_display = paraphrased_comment if paraphrased_comment else "N/A (Comment was non-toxic)"
paraphrased_prediction_display = paraphrased_prediction if paraphrased_prediction else "N/A"
paraphrased_confidence_display = paraphrased_confidence if paraphrased_confidence else 0
paraphrased_toxicity_display = f"{paraphrased_toxicity_score} (Scale: 0 to 1, lower is less toxic)" if paraphrased_toxicity_score is not None else "N/A"
paraphrased_bias_display = f"{paraphrased_bias_score} (Scale: 0 to 1, lower indicates less bias)" if paraphrased_bias_score is not None else "N/A"
paraphrased_label_html = f"<span style='color: {paraphrased_color}; font-size: 20px; font-weight: bold;'>{paraphrased_prediction}</span>" if paraphrased_prediction else ""
semantic_similarity_display = f"{semantic_similarity} (Scale: 0 to 1, higher is better)" if semantic_similarity is not None else "N/A"
emotion_shift_display = emotion_shift if emotion_shift else "N/A"
empathy_score_display = f"{empathy_score} (Scale: 0 to 1, higher indicates more empathy)" if empathy_score is not None else "N/A"
return (
prediction, confidence, color, history, threshold_message, threshold_color,
toxicity_display, bias_display,
paraphrased_comment_display, paraphrased_prediction_display, paraphrased_confidence_display,
paraphrased_toxicity_display, paraphrased_bias_display, paraphrased_label_html,
semantic_similarity_display, emotion_shift_display, empathy_score_display
)
def handle_feedback(feedback, comment):
return f"Thank you for your feedback: {feedback}\nAdditional comment: {comment}"
submit_btn.click(
fn=lambda: ("Classifying...", 0, "", None, "", "", "Calculating...", "Calculating...", "Paraphrasing...", "Calculating...", 0, "Calculating...", "Calculating...", "", "Calculating...", "Calculating...", "Calculating..."), # Show loading state
inputs=[],
outputs=[
prediction_output, confidence_output, label_display, history_output, threshold_display, threshold_display,
toxicity_output, bias_output,
paraphrased_comment_output, paraphrased_prediction_output, paraphrased_confidence_output,
paraphrased_toxicity_output, paraphrased_bias_output, paraphrased_label_display,
semantic_similarity_output, emotion_shift_output, empathy_score_output
]
).then(
fn=handle_classification,
inputs=[comment_input, history_output],
outputs=[
prediction_output, confidence_output, label_display, history_output, threshold_display, threshold_display,
toxicity_output, bias_output,
paraphrased_comment_output, paraphrased_prediction_output, paraphrased_confidence_output,
paraphrased_toxicity_output, paraphrased_bias_output, paraphrased_label_display,
semantic_similarity_output, emotion_shift_output, empathy_score_output
]
).then(
fn=lambda prediction, confidence, color: f"<span style='color: {color}; font-size: 20px; font-weight: bold;'>{prediction}</span>",
inputs=[prediction_output, confidence_output, label_display],
outputs=label_display
).then(
fn=lambda threshold_message, threshold_color: f"<span style='color: {threshold_color}; font-size: 16px;'>{threshold_message}</span>",
inputs=[threshold_display, threshold_display],
outputs=threshold_display
)
feedback_submit.click(
fn=handle_feedback,
inputs=[feedback_input, feedback_comment],
outputs=feedback_output
)
clear_btn.click(
fn=clear_inputs,
inputs=[],
outputs=[
comment_input, confidence_output, label_display, history_output, toxicity_output, bias_output,
paraphrased_comment_output, paraphrased_prediction_output, paraphrased_confidence_output,
paraphrased_toxicity_output, paraphrased_bias_output, paraphrased_label_display,
semantic_similarity_output, emotion_shift_output, empathy_score_output
]
)
gr.Markdown(
"""
---
**About**: This app is part of a four-stage pipeline for automated toxic comment moderation with emotional intelligence via RLHF. Built with ❤️ using Hugging Face and Gradio.
"""
)
demo.launch() |