# model_loader.py from transformers import AutoModelForSequenceClassification, AutoTokenizer, AutoModelForCausalLM from sentence_transformers import SentenceTransformer # Classifier Model (XLM-RoBERTa for toxicity classification) class ClassifierModel: def __init__(self): self.model = None self.tokenizer = None self.load_model() def load_model(self): """ Load the fine-tuned XLM-RoBERTa model and tokenizer for toxic comment classification. """ try: model_name = "JanviMl/xlm-roberta-toxic-classifier-capstone" self.model = AutoModelForSequenceClassification.from_pretrained(model_name) self.tokenizer = AutoTokenizer.from_pretrained(model_name, use_fast=False) except Exception as e: raise Exception(f"Error loading classifier model or tokenizer: {str(e)}") # Paraphraser Model (Granite 3.2-2B-Instruct for paraphrasing) class ParaphraserModel: def __init__(self): self.model = None self.tokenizer = None self.load_model() def load_model(self): """ Load the Granite 3.2-2B-Instruct model and tokenizer for paraphrasing. """ try: model_name = "ibm-granite/granite-3.2-2b-instruct" self.model = AutoModelForCausalLM.from_pretrained(model_name) self.tokenizer = AutoTokenizer.from_pretrained(model_name) except Exception as e: raise Exception(f"Error loading paraphrase model or tokenizer: {str(e)}") # Metrics Models (Sentence-BERT only) class MetricsModels: def __init__(self): self.sentence_bert_model = None def load_sentence_bert(self): if self.sentence_bert_model is None: self.sentence_bert_model = SentenceTransformer('all-MiniLM-L6-v2') return self.sentence_bert_model # Singleton instances classifier_model = ClassifierModel() paraphraser_model = ParaphraserModel() metrics_models = MetricsModels()