# classifier.py import torch from model_loader import classifier_model # Updated import from paraphraser import paraphrase_comment from metrics import compute_semantic_similarity, compute_emotion_shift, compute_empathy_score, compute_bleu_score, compute_rouge_score, compute_entailment_score def classify_toxic_comment(comment): """ Classify a comment as toxic or non-toxic using the fine-tuned XLM-RoBERTa model. If toxic, paraphrase the comment, re-evaluate, and compute additional Stage 3 metrics. Returns the prediction label, confidence, color, toxicity score, bias score, paraphrased comment (if applicable), and its metrics. """ if not comment.strip(): return "Error: Please enter a comment.", None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None # Access the model and tokenizer model = classifier_model.model tokenizer = classifier_model.tokenizer # Tokenize the input comment inputs = tokenizer(comment, return_tensors="pt", truncation=True, padding=True, max_length=512) # Run inference with torch.no_grad(): outputs = model(**inputs) logits = outputs.logits # Get the predicted class (0 = non-toxic, 1 = toxic) predicted_class = torch.argmax(logits, dim=1).item() label = "Toxic" if predicted_class == 1 else "Non-Toxic" confidence = torch.softmax(logits, dim=1)[0][predicted_class].item() label_color = "red" if label == "Toxic" else "green" # Compute Toxicity Score (approximated as the probability of the toxic class) toxicity_score = torch.softmax(logits, dim=1)[0][1].item() toxicity_score = round(toxicity_score, 2) # Simulate Bias Score (placeholder) bias_score = 0.01 if label == "Non-Toxic" else 0.15 bias_score = round(bias_score, 2) # If the comment is toxic, paraphrase it and compute additional metrics paraphrased_comment = None paraphrased_prediction = None paraphrased_confidence = None paraphrased_color = None paraphrased_toxicity_score = None paraphrased_bias_score = None semantic_similarity = None original_emotion = None paraphrased_emotion = None emotion_shift_positive = None empathy_score = None bleu_score = None rouge_scores = None entailment_score = None if label == "Toxic": # Paraphrase the comment paraphrased_comment = paraphrase_comment(comment) # Re-evaluate the paraphrased comment paraphrased_inputs = tokenizer(paraphrased_comment, return_tensors="pt", truncation=True, padding=True, max_length=512) with torch.no_grad(): paraphrased_outputs = model(**paraphrased_inputs) paraphrased_logits = paraphrased_outputs.logits paraphrased_predicted_class = torch.argmax(paraphrased_logits, dim=1).item() paraphrased_label = "Toxic" if paraphrased_predicted_class == 1 else "Non-Toxic" paraphrased_confidence = torch.softmax(paraphrased_logits, dim=1)[0][paraphrased_predicted_class].item() paraphrased_color = "red" if paraphrased_label == "Toxic" else "green" paraphrased_toxicity_score = torch.softmax(paraphrased_logits, dim=1)[0][1].item() paraphrased_toxicity_score = round(paraphrased_toxicity_score, 2) paraphrased_bias_score = 0.01 if paraphrased_label == "Non-Toxic" else 0.15 # Placeholder paraphrased_bias_score = round(paraphrased_bias_score, 2) # Compute additional Stage 3 metrics semantic_similarity = compute_semantic_similarity(comment, paraphrased_comment) original_emotion, paraphrased_emotion, emotion_shift_positive = compute_emotion_shift(comment, paraphrased_comment) empathy_score = compute_empathy_score(paraphrased_comment) bleu_score = compute_bleu_score(comment, paraphrased_comment) rouge_scores = compute_rouge_score(comment, paraphrased_comment) entailment_score = compute_entailment_score(comment, paraphrased_comment) return ( f"Prediction: {label}", confidence, label_color, toxicity_score, bias_score, paraphrased_comment, f"Prediction: {paraphrased_label}" if paraphrased_comment else None, paraphrased_confidence, paraphrased_color, paraphrased_toxicity_score, paraphrased_bias_score, semantic_similarity, f"Original: {original_emotion}, Paraphrased: {paraphrased_emotion}, Positive Shift: {emotion_shift_positive}" if original_emotion else None, empathy_score, bleu_score, rouge_scores, entailment_score )