JanviMl commited on
Commit
9e09714
·
verified ·
1 Parent(s): 918bc17

Delete rlhf.py

Browse files
Files changed (1) hide show
  1. rlhf.py +0 -122
rlhf.py DELETED
@@ -1,122 +0,0 @@
1
- import pandas as pd
2
- import numpy as np
3
- from transformers import AutoModelForCausalLM, AutoTokenizer
4
- import torch
5
- import warnings
6
- warnings.filterwarnings("ignore")
7
-
8
- # Load the human evaluation dataset
9
- df = pd.read_excel("final_comments_evaluations_latest.xlsx")
10
-
11
- # Initialize the Granite 3.2-2B-Instruct model and tokenizer (from your existing setup)
12
- model_name = "ibm-granite/granite-3.2-2b-instruct"
13
- tokenizer = AutoTokenizer.from_pretrained(model_name)
14
- model = AutoModelForCausalLM.from_pretrained(model_name)
15
- device = "cuda" if torch.cuda.is_available() else "cpu"
16
- model.to(device)
17
-
18
- # Define a simple reward model (mockup based on dataset metrics)
19
- # In practice, this would be the trained reward model from Stage 3
20
- def reward_model(paraphrase, original_scores):
21
- # Mock reward calculation: adjust scores based on trends in the dataset
22
- base_toxicity = original_scores["toxicity"]
23
- base_empathy = original_scores["empathy"]
24
- # Simulate improved paraphrasing: reduce toxicity, increase empathy
25
- new_toxicity = max(0.1, base_toxicity - 0.2) # Reduce toxicity
26
- new_empathy = min(0.9, base_empathy + 0.1) # Increase empathy
27
- new_bias = original_scores["bias"]
28
- new_hallucination = max(0.1, original_scores["hallucination"] - 0.1)
29
- # Composite reward score (weights based on dataset analysis)
30
- reward = 0.4 * new_empathy - 0.3 * new_toxicity - 0.2 * new_bias - 0.1 * new_hallucination
31
- return reward, {"toxicity": new_toxicity, "empathy": new_empathy, "bias": new_bias, "hallucination": new_hallucination}
32
-
33
- # Function to generate a paraphrase using your existing paraphrasing logic
34
- def generate_paraphrase(comment, max_length=128):
35
- prompt = (
36
- "You are a content moderator tasked with rewriting toxic comments into neutral and constructive ones while maintaining the original meaning. "
37
- "Follow these guidelines:\n"
38
- "- Remove explicit hate speech, personal attacks, or offensive language.\n"
39
- "- Keep the response neutral and professional.\n"
40
- "- Ensure the rewritten comment retains the original intent but in a constructive tone.\n"
41
- "- Match the length and brevity of the original toxic comment whenever possible. Keep the response short and to the point.\n\n"
42
- "Examples:\n"
43
- "Toxic: \"You're so dumb! You never understand anything!\"\n"
44
- "Neutral: \"You might be misunderstanding this.\"\n"
45
- "Toxic: \"This is the worst idea ever. Only an idiot would suggest this.\"\n"
46
- "Neutral: \"I don’t think this idea works well.\"\n"
47
- "Toxic: \"You’re useless.\"\n"
48
- "Neutral: \"This isn’t helping much.\"\n"
49
- "Toxic: \"Shut up.\"\n"
50
- "Neutral: \"Let’s take a break from this.\"\n\n"
51
- f"Now, rewrite this comment: \"{comment}\""
52
- )
53
- inputs = tokenizer(prompt, return_tensors="pt", max_length=max_length, truncation=True).to(device)
54
- outputs = model.generate(
55
- **inputs,
56
- max_new_tokens=50,
57
- num_beams=4,
58
- early_stopping=True,
59
- do_sample=False
60
- )
61
- paraphrase = tokenizer.decode(outputs[0], skip_special_tokens=True)
62
- # Clean up the output by removing the prompt part
63
- paraphrase = paraphrase.replace(prompt, "").strip()
64
- if paraphrase.startswith("Neutral: "):
65
- paraphrase = paraphrase[len("Neutral: "):].strip()
66
- return paraphrase
67
-
68
- # RLHF Loop
69
- max_iterations = 2
70
- reward_threshold = 0.2 # Target for acceptable paraphrases (based on dataset range -0.25 to 0.24)
71
- results = []
72
-
73
- for idx, row in df.iterrows():
74
- original_comment = row["Comment"]
75
- current_paraphrase = row["Paraphrase_Comment"]
76
- current_reward = row["reward_score"]
77
- current_scores = {
78
- "toxicity": row["toxicity"],
79
- "empathy": row["empathy"],
80
- "bias": row["bias"],
81
- "hallucination": row["hallucination"]
82
- }
83
-
84
- best_paraphrase = current_paraphrase
85
- best_reward = current_reward
86
- best_scores = current_scores.copy()
87
-
88
- # Iteratively refine the paraphrase
89
- for iteration in range(max_iterations):
90
- # Generate a new paraphrase
91
- new_paraphrase = generate_paraphrase(original_comment)
92
- # Evaluate the new paraphrase with the reward model
93
- new_reward, new_scores = reward_model(new_paraphrase, current_scores)
94
-
95
- # If the new reward is better, update the best paraphrase
96
- if new_reward > best_reward:
97
- best_paraphrase = new_paraphrase
98
- best_reward = new_reward
99
- best_scores = new_scores
100
-
101
- # Stop if the reward exceeds the threshold
102
- if best_reward >= reward_threshold:
103
- break
104
-
105
- # Store the result
106
- results.append({
107
- "Comment": original_comment,
108
- "Original_Paraphrase": current_paraphrase,
109
- "Refined_Paraphrase": best_paraphrase,
110
- "Original_Reward_Score": current_reward,
111
- "Refined_Reward_Score": best_reward,
112
- "Refined_Empathy": best_scores["empathy"],
113
- "Refined_Toxicity": best_scores["toxicity"],
114
- "Refined_Bias": best_scores["bias"],
115
- "Refined_Hallucination": best_scores["hallucination"],
116
- "Human_Evaluation_Reasoning": row["Human_Evaluation_Reasoning"]
117
- })
118
-
119
- # Save the results to a CSV file
120
- results_df = pd.DataFrame(results)
121
- results_df.to_csv("refined_paraphrases.csv", index=False)
122
- print("Refinement complete. Results saved to refined_paraphrases.csv")