Spaces:
Sleeping
Sleeping
Delete rlhf.py
Browse files
rlhf.py
DELETED
@@ -1,122 +0,0 @@
|
|
1 |
-
import pandas as pd
|
2 |
-
import numpy as np
|
3 |
-
from transformers import AutoModelForCausalLM, AutoTokenizer
|
4 |
-
import torch
|
5 |
-
import warnings
|
6 |
-
warnings.filterwarnings("ignore")
|
7 |
-
|
8 |
-
# Load the human evaluation dataset
|
9 |
-
df = pd.read_excel("final_comments_evaluations_latest.xlsx")
|
10 |
-
|
11 |
-
# Initialize the Granite 3.2-2B-Instruct model and tokenizer (from your existing setup)
|
12 |
-
model_name = "ibm-granite/granite-3.2-2b-instruct"
|
13 |
-
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
14 |
-
model = AutoModelForCausalLM.from_pretrained(model_name)
|
15 |
-
device = "cuda" if torch.cuda.is_available() else "cpu"
|
16 |
-
model.to(device)
|
17 |
-
|
18 |
-
# Define a simple reward model (mockup based on dataset metrics)
|
19 |
-
# In practice, this would be the trained reward model from Stage 3
|
20 |
-
def reward_model(paraphrase, original_scores):
|
21 |
-
# Mock reward calculation: adjust scores based on trends in the dataset
|
22 |
-
base_toxicity = original_scores["toxicity"]
|
23 |
-
base_empathy = original_scores["empathy"]
|
24 |
-
# Simulate improved paraphrasing: reduce toxicity, increase empathy
|
25 |
-
new_toxicity = max(0.1, base_toxicity - 0.2) # Reduce toxicity
|
26 |
-
new_empathy = min(0.9, base_empathy + 0.1) # Increase empathy
|
27 |
-
new_bias = original_scores["bias"]
|
28 |
-
new_hallucination = max(0.1, original_scores["hallucination"] - 0.1)
|
29 |
-
# Composite reward score (weights based on dataset analysis)
|
30 |
-
reward = 0.4 * new_empathy - 0.3 * new_toxicity - 0.2 * new_bias - 0.1 * new_hallucination
|
31 |
-
return reward, {"toxicity": new_toxicity, "empathy": new_empathy, "bias": new_bias, "hallucination": new_hallucination}
|
32 |
-
|
33 |
-
# Function to generate a paraphrase using your existing paraphrasing logic
|
34 |
-
def generate_paraphrase(comment, max_length=128):
|
35 |
-
prompt = (
|
36 |
-
"You are a content moderator tasked with rewriting toxic comments into neutral and constructive ones while maintaining the original meaning. "
|
37 |
-
"Follow these guidelines:\n"
|
38 |
-
"- Remove explicit hate speech, personal attacks, or offensive language.\n"
|
39 |
-
"- Keep the response neutral and professional.\n"
|
40 |
-
"- Ensure the rewritten comment retains the original intent but in a constructive tone.\n"
|
41 |
-
"- Match the length and brevity of the original toxic comment whenever possible. Keep the response short and to the point.\n\n"
|
42 |
-
"Examples:\n"
|
43 |
-
"Toxic: \"You're so dumb! You never understand anything!\"\n"
|
44 |
-
"Neutral: \"You might be misunderstanding this.\"\n"
|
45 |
-
"Toxic: \"This is the worst idea ever. Only an idiot would suggest this.\"\n"
|
46 |
-
"Neutral: \"I don’t think this idea works well.\"\n"
|
47 |
-
"Toxic: \"You’re useless.\"\n"
|
48 |
-
"Neutral: \"This isn’t helping much.\"\n"
|
49 |
-
"Toxic: \"Shut up.\"\n"
|
50 |
-
"Neutral: \"Let’s take a break from this.\"\n\n"
|
51 |
-
f"Now, rewrite this comment: \"{comment}\""
|
52 |
-
)
|
53 |
-
inputs = tokenizer(prompt, return_tensors="pt", max_length=max_length, truncation=True).to(device)
|
54 |
-
outputs = model.generate(
|
55 |
-
**inputs,
|
56 |
-
max_new_tokens=50,
|
57 |
-
num_beams=4,
|
58 |
-
early_stopping=True,
|
59 |
-
do_sample=False
|
60 |
-
)
|
61 |
-
paraphrase = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
62 |
-
# Clean up the output by removing the prompt part
|
63 |
-
paraphrase = paraphrase.replace(prompt, "").strip()
|
64 |
-
if paraphrase.startswith("Neutral: "):
|
65 |
-
paraphrase = paraphrase[len("Neutral: "):].strip()
|
66 |
-
return paraphrase
|
67 |
-
|
68 |
-
# RLHF Loop
|
69 |
-
max_iterations = 2
|
70 |
-
reward_threshold = 0.2 # Target for acceptable paraphrases (based on dataset range -0.25 to 0.24)
|
71 |
-
results = []
|
72 |
-
|
73 |
-
for idx, row in df.iterrows():
|
74 |
-
original_comment = row["Comment"]
|
75 |
-
current_paraphrase = row["Paraphrase_Comment"]
|
76 |
-
current_reward = row["reward_score"]
|
77 |
-
current_scores = {
|
78 |
-
"toxicity": row["toxicity"],
|
79 |
-
"empathy": row["empathy"],
|
80 |
-
"bias": row["bias"],
|
81 |
-
"hallucination": row["hallucination"]
|
82 |
-
}
|
83 |
-
|
84 |
-
best_paraphrase = current_paraphrase
|
85 |
-
best_reward = current_reward
|
86 |
-
best_scores = current_scores.copy()
|
87 |
-
|
88 |
-
# Iteratively refine the paraphrase
|
89 |
-
for iteration in range(max_iterations):
|
90 |
-
# Generate a new paraphrase
|
91 |
-
new_paraphrase = generate_paraphrase(original_comment)
|
92 |
-
# Evaluate the new paraphrase with the reward model
|
93 |
-
new_reward, new_scores = reward_model(new_paraphrase, current_scores)
|
94 |
-
|
95 |
-
# If the new reward is better, update the best paraphrase
|
96 |
-
if new_reward > best_reward:
|
97 |
-
best_paraphrase = new_paraphrase
|
98 |
-
best_reward = new_reward
|
99 |
-
best_scores = new_scores
|
100 |
-
|
101 |
-
# Stop if the reward exceeds the threshold
|
102 |
-
if best_reward >= reward_threshold:
|
103 |
-
break
|
104 |
-
|
105 |
-
# Store the result
|
106 |
-
results.append({
|
107 |
-
"Comment": original_comment,
|
108 |
-
"Original_Paraphrase": current_paraphrase,
|
109 |
-
"Refined_Paraphrase": best_paraphrase,
|
110 |
-
"Original_Reward_Score": current_reward,
|
111 |
-
"Refined_Reward_Score": best_reward,
|
112 |
-
"Refined_Empathy": best_scores["empathy"],
|
113 |
-
"Refined_Toxicity": best_scores["toxicity"],
|
114 |
-
"Refined_Bias": best_scores["bias"],
|
115 |
-
"Refined_Hallucination": best_scores["hallucination"],
|
116 |
-
"Human_Evaluation_Reasoning": row["Human_Evaluation_Reasoning"]
|
117 |
-
})
|
118 |
-
|
119 |
-
# Save the results to a CSV file
|
120 |
-
results_df = pd.DataFrame(results)
|
121 |
-
results_df.to_csv("refined_paraphrases.csv", index=False)
|
122 |
-
print("Refinement complete. Results saved to refined_paraphrases.csv")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|