Spaces:
Sleeping
Sleeping
Update metrics.py
Browse files- metrics.py +0 -24
metrics.py
CHANGED
@@ -1,12 +1,6 @@
|
|
1 |
# metrics.py
|
2 |
-
import nltk
|
3 |
-
#from nltk.translate.bleu_score import sentence_bleu
|
4 |
-
from rouge_score import rouge_scorer
|
5 |
from model_loader import metrics_models
|
6 |
|
7 |
-
# Download required NLTK data
|
8 |
-
nltk.download('punkt')
|
9 |
-
|
10 |
def compute_semantic_similarity(original, paraphrased):
|
11 |
"""
|
12 |
Compute semantic similarity between the original and paraphrased comment using Sentence-BERT.
|
@@ -35,22 +29,4 @@ def compute_empathy_score(paraphrased):
|
|
35 |
return round(score, 2)
|
36 |
except Exception as e:
|
37 |
print(f"Error computing empathy score: {str(e)}")
|
38 |
-
return None
|
39 |
-
|
40 |
-
|
41 |
-
def compute_rouge_score(original, paraphrased):
|
42 |
-
"""
|
43 |
-
Compute ROUGE scores (ROUGE-1, ROUGE-2, ROUGE-L) between the original and paraphrased comment.
|
44 |
-
Returns a dictionary with ROUGE scores.
|
45 |
-
"""
|
46 |
-
try:
|
47 |
-
scorer = rouge_scorer.RougeScorer(['rouge1', 'rouge2', 'rougeL'], use_stemmer=True)
|
48 |
-
scores = scorer.score(original, paraphrased)
|
49 |
-
return {
|
50 |
-
'rouge1': round(scores['rouge1'].fmeasure, 2),
|
51 |
-
'rouge2': round(scores['rouge2'].fmeasure, 2),
|
52 |
-
'rougeL': round(scores['rougeL'].fmeasure, 2)
|
53 |
-
}
|
54 |
-
except Exception as e:
|
55 |
-
print(f"Error computing ROUGE scores: {str(e)}")
|
56 |
return None
|
|
|
1 |
# metrics.py
|
|
|
|
|
|
|
2 |
from model_loader import metrics_models
|
3 |
|
|
|
|
|
|
|
4 |
def compute_semantic_similarity(original, paraphrased):
|
5 |
"""
|
6 |
Compute semantic similarity between the original and paraphrased comment using Sentence-BERT.
|
|
|
29 |
return round(score, 2)
|
30 |
except Exception as e:
|
31 |
print(f"Error computing empathy score: {str(e)}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
32 |
return None
|