|
|
|
import torch |
|
import time |
|
from model_loader import classifier_model |
|
from paraphraser import paraphrase_comment |
|
from metrics import compute_semantic_similarity, compute_empathy_score |
|
|
|
def classify_toxic_comment(comment): |
|
""" |
|
Classify a comment as toxic or non-toxic using the fine-tuned XLM-RoBERTa model. |
|
If toxic, paraphrase the comment, re-evaluate, and compute essential metrics. |
|
Returns the prediction label, confidence, color, toxicity score, bias score, paraphrased comment (if applicable), and its metrics. |
|
""" |
|
start_total = time.time() |
|
print("Starting classification...") |
|
|
|
if not comment.strip(): |
|
return "Error: Please enter a comment.", None, None, None, None, None, None, None, None, None, None |
|
|
|
|
|
model = classifier_model.model |
|
tokenizer = classifier_model.tokenizer |
|
|
|
|
|
start_classification = time.time() |
|
inputs = tokenizer(comment, return_tensors="pt", truncation=True, padding=True, max_length=512) |
|
|
|
|
|
with torch.no_grad(): |
|
outputs = model(**inputs) |
|
logits = outputs.logits |
|
|
|
|
|
predicted_class = torch.argmax(logits, dim=1).item() |
|
label = "Toxic" if predicted_class == 1 else "Non-Toxic" |
|
confidence = torch.softmax(logits, dim=1)[0][predicted_class].item() |
|
label_color = "red" if label == "Toxic" else "green" |
|
|
|
|
|
toxicity_score = torch.softmax(logits, dim=1)[0][1].item() |
|
toxicity_score = round(toxicity_score, 2) |
|
|
|
|
|
bias_score = 0.01 if label == "Non-Toxic" else 0.15 |
|
bias_score = round(bias_score, 2) |
|
print(f"Classification took {time.time() - start_classification:.2f} seconds") |
|
|
|
|
|
paraphrased_comment = None |
|
paraphrased_prediction = None |
|
paraphrased_confidence = None |
|
paraphrased_color = None |
|
paraphrased_toxicity_score = None |
|
paraphrased_bias_score = None |
|
semantic_similarity = None |
|
empathy_score = None |
|
|
|
if label == "Toxic": |
|
|
|
start_paraphrase = time.time() |
|
paraphrased_comment = paraphrase_comment(comment) |
|
print(f"Paraphrasing took {time.time() - start_paraphrase:.2f} seconds") |
|
|
|
|
|
start_reclassification = time.time() |
|
paraphrased_inputs = tokenizer(paraphrased_comment, return_tensors="pt", truncation=True, padding=True, max_length=512) |
|
with torch.no_grad(): |
|
paraphrased_outputs = model(**paraphrased_inputs) |
|
paraphrased_logits = paraphrased_outputs.logits |
|
|
|
paraphrased_predicted_class = torch.argmax(paraphrased_logits, dim=1).item() |
|
paraphrased_label = "Toxic" if paraphrased_predicted_class == 1 else "Non-Toxic" |
|
paraphrased_confidence = torch.softmax(paraphrased_logits, dim=1)[0][paraphrased_predicted_class].item() |
|
paraphrased_color = "red" if paraphrased_label == "Toxic" else "green" |
|
paraphrased_toxicity_score = torch.softmax(paraphrased_logits, dim=1)[0][1].item() |
|
paraphrased_toxicity_score = round(paraphrased_toxicity_score, 2) |
|
paraphrased_bias_score = 0.01 if paraphrased_label == "Non-Toxic" else 0.15 |
|
paraphrased_bias_score = round(paraphrased_bias_score, 2) |
|
print(f"Reclassification of paraphrased comment took {time.time() - start_reclassification:.2f} seconds") |
|
|
|
|
|
start_metrics = time.time() |
|
semantic_similarity = compute_semantic_similarity(comment, paraphrased_comment) |
|
empathy_score = compute_empathy_score(paraphrased_comment) |
|
print(f"Metrics computation took {time.time() - start_metrics:.2f} seconds") |
|
|
|
print(f"Total processing time: {time.time() - start_total:.2f} seconds") |
|
|
|
return ( |
|
f"Prediction: {label}", confidence, label_color, toxicity_score, bias_score, |
|
paraphrased_comment, f"Prediction: {paraphrased_label}" if paraphrased_comment else None, |
|
paraphrased_confidence, paraphrased_color, paraphrased_toxicity_score, paraphrased_bias_score, |
|
semantic_similarity, empathy_score |
|
) |