JanviMl's picture
Rename rlhf_refinement.py to app.py
6baa809 verified
raw
history blame
5.4 kB
import pandas as pd
import numpy as np
from transformers import AutoModelForCausalLM, AutoTokenizer
import torch
import warnings
warnings.filterwarnings("ignore")
# Load the human evaluation dataset
df = pd.read_excel("final_comments_evaluations_latest.xlsx")
# Initialize the Granite 3.2-2B-Instruct model and tokenizer (from your existing setup)
model_name = "ibm-granite/granite-3.2-2b-instruct"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name)
device = "cuda" if torch.cuda.is_available() else "cpu"
model.to(device)
# Define a simple reward model (mockup based on dataset metrics)
# In practice, this would be the trained reward model from Stage 3
def reward_model(paraphrase, original_scores):
# Mock reward calculation: adjust scores based on trends in the dataset
base_toxicity = original_scores["toxicity"]
base_empathy = original_scores["empathy"]
# Simulate improved paraphrasing: reduce toxicity, increase empathy
new_toxicity = max(0.1, base_toxicity - 0.2) # Reduce toxicity
new_empathy = min(0.9, base_empathy + 0.1) # Increase empathy
new_bias = original_scores["bias"]
new_hallucination = max(0.1, original_scores["hallucination"] - 0.1)
# Composite reward score (weights based on dataset analysis)
reward = 0.4 * new_empathy - 0.3 * new_toxicity - 0.2 * new_bias - 0.1 * new_hallucination
return reward, {"toxicity": new_toxicity, "empathy": new_empathy, "bias": new_bias, "hallucination": new_hallucination}
# Function to generate a paraphrase using your existing paraphrasing logic
def generate_paraphrase(comment, max_length=128):
prompt = (
"You are a content moderator tasked with rewriting toxic comments into neutral and constructive ones while maintaining the original meaning. "
"Follow these guidelines:\n"
"- Remove explicit hate speech, personal attacks, or offensive language.\n"
"- Keep the response neutral and professional.\n"
"- Ensure the rewritten comment retains the original intent but in a constructive tone.\n"
"- Match the length and brevity of the original toxic comment whenever possible. Keep the response short and to the point.\n\n"
"Examples:\n"
"Toxic: \"You're so dumb! You never understand anything!\"\n"
"Neutral: \"You might be misunderstanding this.\"\n"
"Toxic: \"This is the worst idea ever. Only an idiot would suggest this.\"\n"
"Neutral: \"I don’t think this idea works well.\"\n"
"Toxic: \"You’re useless.\"\n"
"Neutral: \"This isn’t helping much.\"\n"
"Toxic: \"Shut up.\"\n"
"Neutral: \"Let’s take a break from this.\"\n\n"
f"Now, rewrite this comment: \"{comment}\""
)
inputs = tokenizer(prompt, return_tensors="pt", max_length=max_length, truncation=True).to(device)
outputs = model.generate(
**inputs,
max_new_tokens=50,
num_beams=4,
early_stopping=True,
do_sample=False
)
paraphrase = tokenizer.decode(outputs[0], skip_special_tokens=True)
# Clean up the output by removing the prompt part
paraphrase = paraphrase.replace(prompt, "").strip()
if paraphrase.startswith("Neutral: "):
paraphrase = paraphrase[len("Neutral: "):].strip()
return paraphrase
# RLHF Loop
max_iterations = 5
reward_threshold = 0.2 # Target for acceptable paraphrases (based on dataset range -0.25 to 0.24)
results = []
for idx, row in df.iterrows():
original_comment = row["Comment"]
current_paraphrase = row["Paraphrase_Comment"]
current_reward = row["reward_score"]
current_scores = {
"toxicity": row["toxicity"],
"empathy": row["empathy"],
"bias": row["bias"],
"hallucination": row["hallucination"]
}
best_paraphrase = current_paraphrase
best_reward = current_reward
best_scores = current_scores.copy()
# Iteratively refine the paraphrase
for iteration in range(max_iterations):
# Generate a new paraphrase
new_paraphrase = generate_paraphrase(original_comment)
# Evaluate the new paraphrase with the reward model
new_reward, new_scores = reward_model(new_paraphrase, current_scores)
# If the new reward is better, update the best paraphrase
if new_reward > best_reward:
best_paraphrase = new_paraphrase
best_reward = new_reward
best_scores = new_scores
# Stop if the reward exceeds the threshold
if best_reward >= reward_threshold:
break
# Store the result
results.append({
"Comment": original_comment,
"Original_Paraphrase": current_paraphrase,
"Refined_Paraphrase": best_paraphrase,
"Original_Reward_Score": current_reward,
"Refined_Reward_Score": best_reward,
"Refined_Empathy": best_scores["empathy"],
"Refined_Toxicity": best_scores["toxicity"],
"Refined_Bias": best_scores["bias"],
"Refined_Hallucination": best_scores["hallucination"],
"Human_Evaluation_Reasoning": row["Human_Evaluation_Reasoning"]
})
# Save the results to a CSV file
results_df = pd.DataFrame(results)
results_df.to_csv("refined_paraphrases.csv", index=False)
print("Refinement complete. Results saved to refined_paraphrases.csv")