|
|
|
import nltk |
|
from nltk.translate.bleu_score import sentence_bleu |
|
from rouge_score import rouge_scorer |
|
from model_loader import metrics_models |
|
|
|
|
|
nltk.download('punkt') |
|
|
|
def compute_semantic_similarity(original, paraphrased): |
|
""" |
|
Compute semantic similarity between the original and paraphrased comment using Sentence-BERT. |
|
Returns a similarity score between 0 and 1. |
|
""" |
|
try: |
|
sentence_bert = metrics_models.load_sentence_bert() |
|
embeddings = sentence_bert.encode([original, paraphrased]) |
|
similarity = float(embeddings[0] @ embeddings[1].T) |
|
return round(similarity, 2) |
|
except Exception as e: |
|
print(f"Error computing semantic similarity: {str(e)}") |
|
return None |
|
|
|
def compute_emotion_shift(original, paraphrased): |
|
""" |
|
Compute the emotion shift between the original and paraphrased comment. |
|
Returns the original emotion, paraphrased emotion, and whether the shift is positive. |
|
""" |
|
try: |
|
emotion_classifier = metrics_models.load_emotion_classifier() |
|
original_emotions = emotion_classifier(original) |
|
paraphrased_emotions = emotion_classifier(paraphrased) |
|
|
|
|
|
original_emotion = max(original_emotions[0], key=lambda x: x['score'])['label'] |
|
paraphrased_emotion = max(paraphrased_emotions[0], key=lambda x: x['score'])['label'] |
|
|
|
|
|
negative_emotions = ['anger', 'sadness', 'fear'] |
|
positive_emotions = ['joy', 'love', 'surprise'] |
|
|
|
|
|
emotion_shift_positive = ( |
|
(original_emotion in negative_emotions and paraphrased_emotion in positive_emotions) or |
|
(original_emotion in negative_emotions and paraphrased_emotion not in negative_emotions) |
|
) |
|
|
|
return original_emotion, paraphrased_emotion, emotion_shift_positive |
|
except Exception as e: |
|
print(f"Error computing emotion shift: {str(e)}") |
|
return None, None, None |
|
|
|
def compute_empathy_score(paraphrased): |
|
""" |
|
Compute an empathy score for the paraphrased comment (placeholder). |
|
Returns a score between 0 and 1. |
|
""" |
|
try: |
|
|
|
empathy_words = ["sorry", "understand", "care", "help", "support"] |
|
words = paraphrased.lower().split() |
|
empathy_count = sum(1 for word in words if word in empathy_words) |
|
score = empathy_count / len(words) if words else 0 |
|
return round(score, 2) |
|
except Exception as e: |
|
print(f"Error computing empathy score: {str(e)}") |
|
return None |
|
|
|
def compute_bleu_score(original, paraphrased): |
|
""" |
|
Compute the BLEU score between the original and paraphrased comment. |
|
Returns a score between 0 and 1. |
|
""" |
|
try: |
|
reference = [nltk.word_tokenize(original.lower())] |
|
candidate = nltk.word_tokenize(paraphrased.lower()) |
|
score = sentence_bleu(reference, candidate, weights=(0.25, 0.25, 0.25, 0.25)) |
|
return round(score, 2) |
|
except Exception as e: |
|
print(f"Error computing BLEU score: {str(e)}") |
|
return None |
|
|
|
def compute_rouge_score(original, paraphrased): |
|
""" |
|
Compute ROUGE scores (ROUGE-1, ROUGE-2, ROUGE-L) between the original and paraphrased comment. |
|
Returns a dictionary with ROUGE scores. |
|
""" |
|
try: |
|
scorer = rouge_scorer.RougeScorer(['rouge1', 'rouge2', 'rougeL'], use_stemmer=True) |
|
scores = scorer.score(original, paraphrased) |
|
return { |
|
'rouge1': round(scores['rouge1'].fmeasure, 2), |
|
'rouge2': round(scores['rouge2'].fmeasure, 2), |
|
'rougeL': round(scores['rougeL'].fmeasure, 2) |
|
} |
|
except Exception as e: |
|
print(f"Error computing ROUGE scores: {str(e)}") |
|
return None |
|
|
|
def compute_entailment_score(original, paraphrased): |
|
""" |
|
Compute the entailment score to check factual consistency using an NLI model. |
|
Returns a score between 0 and 1. |
|
""" |
|
try: |
|
nli_classifier = metrics_models.load_nli_classifier() |
|
result = nli_classifier( |
|
original, |
|
paraphrased, |
|
candidate_labels=["entailment", "contradiction", "neutral"] |
|
) |
|
entailment_score = next(score for label, score in zip(result['labels'], result['scores']) if label == "entailment") |
|
return round(entailment_score, 2) |
|
except Exception as e: |
|
print(f"Error computing entailment score: {str(e)}") |
|
return None |