Spaces:
Sleeping
Sleeping
# metrics.py | |
import torch | |
from sentence_transformers import SentenceTransformer, util | |
from transformers import pipeline | |
# Load Sentence-BERT model for semantic similarity | |
sentence_bert_model = SentenceTransformer('all-MiniLM-L6-v2') | |
# Load a pre-trained emotion classifier | |
emotion_classifier = pipeline("text-classification", model="bhadresh-savani/distilbert-base-uncased-emotion", top_k=None) | |
def compute_semantic_similarity(original_comment, paraphrased_comment): | |
""" | |
Compute the semantic similarity between the original and paraphrased comments using Sentence-BERT. | |
Returns a score between 0 and 1 (higher is better). | |
""" | |
original_embedding = sentence_bert_model.encode(original_comment, convert_to_tensor=True) | |
paraphrased_embedding = sentence_bert_model.encode(paraphrased_comment, convert_to_tensor=True) | |
similarity_score = util.cos_sim(original_embedding, paraphrased_embedding)[0][0].item() | |
return round(similarity_score, 2) | |
def compute_emotion_shift(original_comment, paraphrased_comment): | |
""" | |
Compute the shift in emotional tone between the original and paraphrased comments. | |
Returns the dominant emotion labels for both comments and a flag indicating if the shift is positive. | |
""" | |
# Classify emotions in the original comment | |
original_emotions = emotion_classifier(original_comment) | |
# Since pipeline returns a list of lists, take the first (and only) inner list | |
original_emotions = original_emotions[0] if isinstance(original_emotions, list) and original_emotions else [] | |
original_dominant_emotion = max(original_emotions, key=lambda x: x['score'])['label'] if original_emotions else "unknown" | |
# Classify emotions in the paraphrased comment | |
paraphrased_emotions = emotion_classifier(paraphrased_comment) | |
paraphrased_emotions = paraphrased_emotions[0] if isinstance(paraphrased_emotions, list) and paraphrased_emotions else [] | |
paraphrased_dominant_emotion = max(paraphrased_emotions, key=lambda x: x['score'])['label'] if paraphrased_emotions else "unknown" | |
# Define negative and positive emotions | |
negative_emotions = ['anger', 'sadness', 'fear'] | |
positive_emotions = ['joy', 'love'] | |
# Check if the shift is positive (e.g., from a negative emotion to a neutral/positive one) | |
is_positive_shift = ( | |
original_dominant_emotion in negative_emotions and | |
(paraphrased_dominant_emotion in positive_emotions or paraphrased_dominant_emotion not in negative_emotions) | |
) | |
return original_dominant_emotion, paraphrased_dominant_emotion, is_positive_shift | |
def compute_empathy_score(paraphrased_comment): | |
""" | |
Compute a proxy empathy score based on politeness keywords. | |
Returns a score between 0 and 1 (higher indicates more empathy). | |
""" | |
empathy_keywords = ['please', 'thank you', 'appreciate', 'understand', 'sorry', 'consider', 'kindly', 'help', 'support'] | |
comment_lower = paraphrased_comment.lower() | |
keyword_count = sum(1 for keyword in empathy_keywords if keyword in comment_lower) | |
empathy_score = min(keyword_count / 3, 1.0) | |
return round(empathy_score, 2) |