Spaces:
Sleeping
Sleeping
# metrics.py | |
import nltk | |
from nltk.translate.bleu_score import sentence_bleu | |
from rouge_score import rouge_scorer | |
from model_loader import metrics_models | |
# Download required NLTK data | |
nltk.download('punkt') | |
def compute_semantic_similarity(original, paraphrased): | |
""" | |
Compute semantic similarity between the original and paraphrased comment using Sentence-BERT. | |
Returns a similarity score between 0 and 1. | |
""" | |
try: | |
sentence_bert = metrics_models.load_sentence_bert() | |
embeddings = sentence_bert.encode([original, paraphrased]) | |
similarity = float(embeddings[0] @ embeddings[1].T) | |
return round(similarity, 2) | |
except Exception as e: | |
print(f"Error computing semantic similarity: {str(e)}") | |
return None | |
def compute_emotion_shift(original, paraphrased): | |
""" | |
Compute the emotion shift between the original and paraphrased comment. | |
Returns the original emotion, paraphrased emotion, and whether the shift is positive. | |
""" | |
try: | |
emotion_classifier = metrics_models.load_emotion_classifier() | |
original_emotions = emotion_classifier(original) | |
paraphrased_emotions = emotion_classifier(paraphrased) | |
# Get the top emotion for each | |
original_emotion = max(original_emotions[0], key=lambda x: x['score'])['label'] | |
paraphrased_emotion = max(paraphrased_emotions[0], key=lambda x: x['score'])['label'] | |
# Define negative and positive emotions | |
negative_emotions = ['anger', 'sadness', 'fear'] | |
positive_emotions = ['joy', 'love', 'surprise'] | |
# Determine if the shift is positive | |
emotion_shift_positive = ( | |
(original_emotion in negative_emotions and paraphrased_emotion in positive_emotions) or | |
(original_emotion in negative_emotions and paraphrased_emotion not in negative_emotions) | |
) | |
return original_emotion, paraphrased_emotion, emotion_shift_positive | |
except Exception as e: | |
print(f"Error computing emotion shift: {str(e)}") | |
return None, None, None | |
def compute_empathy_score(paraphrased): | |
""" | |
Compute an empathy score for the paraphrased comment (placeholder). | |
Returns a score between 0 and 1. | |
""" | |
try: | |
# Placeholder: Compute empathy based on word presence (e.g., "sorry", "understand") | |
empathy_words = ["sorry", "understand", "care", "help", "support"] | |
words = paraphrased.lower().split() | |
empathy_count = sum(1 for word in words if word in empathy_words) | |
score = empathy_count / len(words) if words else 0 | |
return round(score, 2) | |
except Exception as e: | |
print(f"Error computing empathy score: {str(e)}") | |
return None | |
def compute_bleu_score(original, paraphrased): | |
""" | |
Compute the BLEU score between the original and paraphrased comment. | |
Returns a score between 0 and 1. | |
""" | |
try: | |
reference = [nltk.word_tokenize(original.lower())] | |
candidate = nltk.word_tokenize(paraphrased.lower()) | |
score = sentence_bleu(reference, candidate, weights=(0.25, 0.25, 0.25, 0.25)) | |
return round(score, 2) | |
except Exception as e: | |
print(f"Error computing BLEU score: {str(e)}") | |
return None | |
def compute_rouge_score(original, paraphrased): | |
""" | |
Compute ROUGE scores (ROUGE-1, ROUGE-2, ROUGE-L) between the original and paraphrased comment. | |
Returns a dictionary with ROUGE scores. | |
""" | |
try: | |
scorer = rouge_scorer.RougeScorer(['rouge1', 'rouge2', 'rougeL'], use_stemmer=True) | |
scores = scorer.score(original, paraphrased) | |
return { | |
'rouge1': round(scores['rouge1'].fmeasure, 2), | |
'rouge2': round(scores['rouge2'].fmeasure, 2), | |
'rougeL': round(scores['rougeL'].fmeasure, 2) | |
} | |
except Exception as e: | |
print(f"Error computing ROUGE scores: {str(e)}") | |
return None | |
def compute_entailment_score(original, paraphrased): | |
""" | |
Compute the entailment score to check factual consistency using an NLI model. | |
Returns a score between 0 and 1. | |
""" | |
try: | |
nli_classifier = metrics_models.load_nli_classifier() | |
result = nli_classifier( | |
original, | |
paraphrased, | |
candidate_labels=["entailment", "contradiction", "neutral"] | |
) | |
entailment_score = next(score for label, score in zip(result['labels'], result['scores']) if label == "entailment") | |
return round(entailment_score, 2) | |
except Exception as e: | |
print(f"Error computing entailment score: {str(e)}") | |
return None |