Spaces:
Sleeping
Sleeping
File size: 15,398 Bytes
2ec7c09 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 |
# app.py
import gradio as gr
from classifier import classify_toxic_comment
# Clear function for resetting the UI
def clear_inputs():
return "", 0, "", [], "", "", "", "", 0, "", "", "", "", "", "", "", ""
# Custom CSS for styling
custom_css = """
/* General Styling */
body {
font-family: 'Roboto', sans-serif;
background-color: #F5F7FA;
color: #333333;
}
/* Header Styling */
h1 {
color: #FFFFFF !important;
background-color: #1E88E5;
padding: 20px;
border-radius: 10px;
text-align: center;
box-shadow: 0 4px 8px rgba(0, 0, 0, 0.1);
margin-bottom: 20px;
}
/* Section Headers */
h3 {
color: #1E88E5;
font-weight: 600;
margin-bottom: 15px;
border-bottom: 2px solid #1E88E5;
padding-bottom: 5px;
}
/* Input Textbox */
.gr-textbox textarea {
border: 2px solid #1E88E5 !important;
border-radius: 10px !important;
box-shadow: 0 2px 4px rgba(0, 0, 0, 0.1);
transition: border-color 0.3s, box-shadow 0.3s;
}
.gr-textbox textarea:focus {
border-color: #1565C0 !important;
box-shadow: 0 4px 8px rgba(0, 0, 0, 0.15) !important;
}
/* Buttons */
.gr-button-primary {
background-color: #1E88E5 !important;
color: white !important;
border-radius: 10px !important;
box-shadow: 0 2px 4px rgba(0, 0, 0, 0.1);
transition: background-color 0.3s, transform 0.1s;
font-weight: 500;
}
.gr-button-primary:hover {
background-color: #1565C0 !important;
transform: translateY(-2px);
}
.gr-button-secondary {
background-color: #D32F2F !important;
color: white !important;
border-radius: 10px !important;
box-shadow: 0 2px 4px rgba(0, 0, 0, 0.1);
transition: background-color 0.3s, transform 0.1s;
font-weight: 500;
}
.gr-button-secondary:hover {
background-color: #B71C1C !important;
transform: translateY(-2px);
}
/* Sliders */
.gr-slider {
background-color: #E0E0E0 !important;
border-radius: 10px !important;
box-shadow: inset 0 1px 3px rgba(0, 0, 0, 0.1);
}
/* Output Boxes */
.gr-textbox {
border: 1px solid #E0E0E0 !important;
border-radius: 10px !important;
background-color: #FFFFFF !important;
box-shadow: 0 2px 4px rgba(0, 0, 0, 0.05);
padding: 10px;
margin-bottom: 10px;
}
/* Accordion */
.gr-accordion {
border: 1px solid #E0E0E0 !important;
border-radius: 10px !important;
background-color: #FFFFFF !important;
margin-bottom: 15px;
}
/* Custom Classes for Visual Indicators */
.toxic-indicator::before {
content: "⚠️ ";
color: #D32F2F;
font-size: 20px;
}
.nontoxic-indicator::before {
content: "✅ ";
color: #388E3C;
font-size: 20px;
}
/* Loading State Animation */
@keyframes pulse {
0% { opacity: 1; }
50% { opacity: 0.5; }
100% { opacity: 1; }
}
.loading {
animation: pulse 1.5s infinite;
}
"""
# Main UI function
with gr.Blocks(theme=gr.themes.Soft(), css=custom_css) as demo:
# Header Section
gr.Markdown(
"""
# Toxic Comment Classifier
Enter a comment below to check if it's toxic or non-toxic. This app uses a fine-tuned XLM-RoBERTa model to classify comments, paraphrases toxic comments, and evaluates the output with advanced metrics.
"""
)
# Input Section
with gr.Row():
with gr.Column(scale=4, min_width=600):
comment_input = gr.Textbox(
label="Your Comment",
placeholder="Type your comment here...",
lines=3,
max_lines=5
)
with gr.Column(scale=1, min_width=200):
submit_btn = gr.Button("Classify Comment", variant="primary")
clear_btn = gr.Button("Clear", variant="secondary")
gr.Examples(
examples=[
"I love this community, it's so supportive!",
"You are an idiot and should leave this platform.",
"This app is amazing, great work!"
],
inputs=comment_input,
label="Try these examples:"
)
# Output Section
with gr.Row():
# Left Column: Original Comment Metrics
with gr.Column(scale=1, min_width=400):
gr.Markdown("### Original Comment Analysis")
prediction_output = gr.Textbox(label="Prediction", placeholder="Prediction will appear here...")
label_display = gr.HTML()
confidence_output = gr.Slider(
label="Confidence",
minimum=0,
maximum=1,
value=0,
interactive=False
)
toxicity_output = gr.Textbox(label="Toxicity Score", placeholder="Toxicity score will appear here...")
bias_output = gr.Textbox(label="Bias Score", placeholder="Bias score will appear here...")
threshold_display = gr.HTML()
# Right Column: Paraphrased Output (if Toxic)
with gr.Column(scale=1, min_width=400):
with gr.Accordion("Paraphrased Output (if Toxic)", open=False):
paraphrased_comment_output = gr.Textbox(label="Paraphrased Comment", placeholder="Paraphrased comment will appear here if the input is toxic...")
paraphrased_prediction_output = gr.Textbox(label="Paraphrased Prediction", placeholder="Prediction will appear here...")
paraphrased_label_display = gr.HTML()
paraphrased_confidence_output = gr.Slider(
label="Paraphrased Confidence",
minimum=0,
maximum=1,
value=0,
interactive=False
)
paraphrased_toxicity_output = gr.Textbox(label="Paraphrased Toxicity Score", placeholder="Toxicity score will appear here...")
paraphrased_bias_output = gr.Textbox(label="Paraphrased Bias Score", placeholder="Bias score will appear here...")
semantic_similarity_output = gr.Textbox(label="Semantic Similarity", placeholder="Semantic similarity score will appear here...")
emotion_shift_output = gr.Textbox(label="Emotion Shift", placeholder="Emotion shift will appear here...")
empathy_score_output = gr.Textbox(label="Empathy Score", placeholder="Empathy score will appear here...")
bleu_score_output = gr.Textbox(label="BLEU Score", placeholder="BLEU score will appear here...")
rouge_scores_output = gr.Textbox(label="ROUGE Scores", placeholder="ROUGE scores will appear here...")
entailment_score_output = gr.Textbox(label="Entailment Score (Factual Consistency)", placeholder="Entailment score will appear here...")
# History and Feedback Sections
with gr.Row():
with gr.Column(scale=1):
with gr.Accordion("Prediction History", open=False):
history_output = gr.JSON(label="Previous Predictions")
with gr.Column(scale=1):
with gr.Accordion("Provide Feedback", open=False):
feedback_input = gr.Radio(
choices=["Yes, the prediction was correct", "No, the prediction was incorrect"],
label="Was this prediction correct?"
)
feedback_comment = gr.Textbox(label="Additional Comments (optional)", placeholder="Let us know your thoughts...")
feedback_submit = gr.Button("Submit Feedback")
feedback_output = gr.Textbox(label="Feedback Status")
def handle_classification(comment, history):
if history is None:
history = []
(
prediction, confidence, color, toxicity_score, bias_score,
paraphrased_comment, paraphrased_prediction, paraphrased_confidence,
paraphrased_color, paraphrased_toxicity_score, paraphrased_bias_score,
semantic_similarity, emotion_shift, empathy_score,
bleu_score, rouge_scores, entailment_score
) = classify_toxic_comment(comment)
history.append({
"comment": comment,
"prediction": prediction,
"confidence": confidence,
"toxicity_score": toxicity_score,
"bias_score": bias_score,
"paraphrased_comment": paraphrased_comment,
"paraphrased_prediction": paraphrased_prediction,
"paraphrased_confidence": paraphrased_confidence,
"paraphrased_toxicity_score": paraphrased_toxicity_score,
"paraphrased_bias_score": paraphrased_bias_score,
"semantic_similarity": semantic_similarity,
"emotion_shift": emotion_shift,
"empathy_score": empathy_score,
"bleu_score": bleu_score,
"rouge_scores": rouge_scores,
"entailment_score": entailment_score
})
threshold_message = "High Confidence" if confidence >= 0.7 else "Low Confidence"
threshold_color = "green" if confidence >= 0.7 else "orange"
toxicity_display = f"{toxicity_score} (Scale: 0 to 1, lower is less toxic)" if toxicity_score is not None else "N/A"
bias_display = f"{bias_score} (Scale: 0 to 1, lower indicates less bias)" if bias_score is not None else "N/A"
paraphrased_comment_display = paraphrased_comment if paraphrased_comment else "N/A (Comment was non-toxic)"
paraphrased_prediction_display = paraphrased_prediction if paraphrased_prediction else "N/A"
paraphrased_confidence_display = paraphrased_confidence if paraphrased_confidence else 0
paraphrased_toxicity_display = f"{paraphrased_toxicity_score} (Scale: 0 to 1, lower is less toxic)" if paraphrased_toxicity_score is not None else "N/A"
paraphrased_bias_display = f"{paraphrased_bias_score} (Scale: 0 to 1, lower indicates less bias)" if paraphrased_bias_score is not None else "N/A"
paraphrased_label_html = (
f"<span class='{'toxic-indicator' if 'Toxic' in paraphrased_prediction else 'nontoxic-indicator'}' "
f"style='color: {paraphrased_color}; font-size: 20px; font-weight: bold;'>{paraphrased_prediction}</span>"
if paraphrased_prediction else ""
)
semantic_similarity_display = f"{semantic_similarity} (Scale: 0 to 1, higher is better)" if semantic_similarity is not None else "N/A"
emotion_shift_display = emotion_shift if emotion_shift else "N/A"
empathy_score_display = f"{empathy_score} (Scale: 0 to 1, higher indicates more empathy)" if empathy_score is not None else "N/A"
bleu_score_display = f"{bleu_score} (Scale: 0 to 1, higher is better)" if bleu_score is not None else "N/A"
rouge_scores_display = (
f"ROUGE-1: {rouge_scores['rouge1']}, ROUGE-2: {rouge_scores['rouge2']}, ROUGE-L: {rouge_scores['rougeL']}"
if rouge_scores else "N/A"
)
entailment_score_display = f"{entailment_score} (Scale: 0 to 1, higher indicates better consistency)" if entailment_score is not None else "N/A"
# Add visual indicator to the prediction
prediction_class = "toxic-indicator" if "Toxic" in prediction else "nontoxic-indicator"
prediction_html = f"<span class='{prediction_class}' style='color: {color}; font-size: 20px; font-weight: bold;'>{prediction}</span>"
return (
prediction, confidence, prediction_html, history, threshold_message, threshold_color,
toxicity_display, bias_display,
paraphrased_comment_display, paraphrased_prediction_display, paraphrased_confidence_display,
paraphrased_toxicity_display, paraphrased_bias_display, paraphrased_label_html,
semantic_similarity_display, emotion_shift_display, empathy_score_display,
bleu_score_display, rouge_scores_display, entailment_score_display
)
def handle_feedback(feedback, comment):
return f"Thank you for your feedback: {feedback}\nAdditional comment: {comment}"
submit_btn.click(
fn=lambda: (
"Classifying... <span class='loading'>⏳</span>", 0, "", None, "", "",
"Calculating... <span class='loading'>⏳</span>", "Calculating... <span class='loading'>⏳</span>",
"Paraphrasing... <span class='loading'>⏳</span>", "Calculating... <span class='loading'>⏳</span>", 0,
"Calculating... <span class='loading'>⏳</span>", "Calculating... <span class='loading'>⏳</span>", "",
"Calculating... <span class='loading'>⏳</span>", "Calculating... <span class='loading'>⏳</span>",
"Calculating... <span class='loading'>⏳</span>", "Calculating... <span class='loading'>⏳</span>",
"Calculating... <span class='loading'>⏳</span>", "Calculating... <span class='loading'>⏳</span>"
), # Show loading state with animation
inputs=[],
outputs=[
prediction_output, confidence_output, label_display, history_output, threshold_display, threshold_display,
toxicity_output, bias_output,
paraphrased_comment_output, paraphrased_prediction_output, paraphrased_confidence_output,
paraphrased_toxicity_output, paraphrased_bias_output, paraphrased_label_display,
semantic_similarity_output, emotion_shift_output, empathy_score_output,
bleu_score_output, rouge_scores_output, entailment_score_output
]
).then(
fn=handle_classification,
inputs=[comment_input, history_output],
outputs=[
prediction_output, confidence_output, label_display, history_output, threshold_display, threshold_display,
toxicity_output, bias_output,
paraphrased_comment_output, paraphrased_prediction_output, paraphrased_confidence_output,
paraphrased_toxicity_output, paraphrased_bias_output, paraphrased_label_display,
semantic_similarity_output, emotion_shift_output, empathy_score_output,
bleu_score_output, rouge_scores_output, entailment_score_output
]
).then(
fn=lambda prediction, confidence, html: html,
inputs=[prediction_output, confidence_output, label_display],
outputs=label_display
).then(
fn=lambda threshold_message, threshold_color: f"<span style='color: {threshold_color}; font-size: 16px;'>{threshold_message}</span>",
inputs=[threshold_display, threshold_display],
outputs=threshold_display
)
feedback_submit.click(
fn=handle_feedback,
inputs=[feedback_input, feedback_comment],
outputs=feedback_output
)
clear_btn.click(
fn=clear_inputs,
inputs=[],
outputs=[
comment_input, confidence_output, label_display, history_output, toxicity_output, bias_output,
paraphrased_comment_output, paraphrased_prediction_output, paraphrased_confidence_output,
paraphrased_toxicity_output, paraphrased_bias_output, paraphrased_label_display,
semantic_similarity_output, emotion_shift_output, empathy_score_output,
bleu_score_output, rouge_scores_output, entailment_score_output
]
)
gr.Markdown(
"""
---
**About**: This app is part of a four-stage pipeline for automated toxic comment moderation with emotional intelligence via RLHF. Built with ❤️ using Hugging Face and Gradio.
"""
)
demo.launch() |