File size: 15,398 Bytes
2ec7c09
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
# app.py
import gradio as gr
from classifier import classify_toxic_comment

# Clear function for resetting the UI
def clear_inputs():
    return "", 0, "", [], "", "", "", "", 0, "", "", "", "", "", "", "", ""

# Custom CSS for styling
custom_css = """
/* General Styling */
body {
    font-family: 'Roboto', sans-serif;
    background-color: #F5F7FA;
    color: #333333;
}

/* Header Styling */
h1 {
    color: #FFFFFF !important;
    background-color: #1E88E5;
    padding: 20px;
    border-radius: 10px;
    text-align: center;
    box-shadow: 0 4px 8px rgba(0, 0, 0, 0.1);
    margin-bottom: 20px;
}

/* Section Headers */
h3 {
    color: #1E88E5;
    font-weight: 600;
    margin-bottom: 15px;
    border-bottom: 2px solid #1E88E5;
    padding-bottom: 5px;
}

/* Input Textbox */
.gr-textbox textarea {
    border: 2px solid #1E88E5 !important;
    border-radius: 10px !important;
    box-shadow: 0 2px 4px rgba(0, 0, 0, 0.1);
    transition: border-color 0.3s, box-shadow 0.3s;
}
.gr-textbox textarea:focus {
    border-color: #1565C0 !important;
    box-shadow: 0 4px 8px rgba(0, 0, 0, 0.15) !important;
}

/* Buttons */
.gr-button-primary {
    background-color: #1E88E5 !important;
    color: white !important;
    border-radius: 10px !important;
    box-shadow: 0 2px 4px rgba(0, 0, 0, 0.1);
    transition: background-color 0.3s, transform 0.1s;
    font-weight: 500;
}
.gr-button-primary:hover {
    background-color: #1565C0 !important;
    transform: translateY(-2px);
}
.gr-button-secondary {
    background-color: #D32F2F !important;
    color: white !important;
    border-radius: 10px !important;
    box-shadow: 0 2px 4px rgba(0, 0, 0, 0.1);
    transition: background-color 0.3s, transform 0.1s;
    font-weight: 500;
}
.gr-button-secondary:hover {
    background-color: #B71C1C !important;
    transform: translateY(-2px);
}

/* Sliders */
.gr-slider {
    background-color: #E0E0E0 !important;
    border-radius: 10px !important;
    box-shadow: inset 0 1px 3px rgba(0, 0, 0, 0.1);
}

/* Output Boxes */
.gr-textbox {
    border: 1px solid #E0E0E0 !important;
    border-radius: 10px !important;
    background-color: #FFFFFF !important;
    box-shadow: 0 2px 4px rgba(0, 0, 0, 0.05);
    padding: 10px;
    margin-bottom: 10px;
}

/* Accordion */
.gr-accordion {
    border: 1px solid #E0E0E0 !important;
    border-radius: 10px !important;
    background-color: #FFFFFF !important;
    margin-bottom: 15px;
}

/* Custom Classes for Visual Indicators */
.toxic-indicator::before {
    content: "⚠️ ";
    color: #D32F2F;
    font-size: 20px;
}
.nontoxic-indicator::before {
    content: "✅ ";
    color: #388E3C;
    font-size: 20px;
}

/* Loading State Animation */
@keyframes pulse {
    0% { opacity: 1; }
    50% { opacity: 0.5; }
    100% { opacity: 1; }
}
.loading {
    animation: pulse 1.5s infinite;
}
"""

# Main UI function
with gr.Blocks(theme=gr.themes.Soft(), css=custom_css) as demo:
    # Header Section
    gr.Markdown(
        """
        # Toxic Comment Classifier
        Enter a comment below to check if it's toxic or non-toxic. This app uses a fine-tuned XLM-RoBERTa model to classify comments, paraphrases toxic comments, and evaluates the output with advanced metrics.
        """
    )

    # Input Section
    with gr.Row():
        with gr.Column(scale=4, min_width=600):
            comment_input = gr.Textbox(
                label="Your Comment",
                placeholder="Type your comment here...",
                lines=3,
                max_lines=5
            )
        with gr.Column(scale=1, min_width=200):
            submit_btn = gr.Button("Classify Comment", variant="primary")
            clear_btn = gr.Button("Clear", variant="secondary")

    gr.Examples(
        examples=[
            "I love this community, it's so supportive!",
            "You are an idiot and should leave this platform.",
            "This app is amazing, great work!"
        ],
        inputs=comment_input,
        label="Try these examples:"
    )

    # Output Section
    with gr.Row():
        # Left Column: Original Comment Metrics
        with gr.Column(scale=1, min_width=400):
            gr.Markdown("### Original Comment Analysis")
            prediction_output = gr.Textbox(label="Prediction", placeholder="Prediction will appear here...")
            label_display = gr.HTML()
            confidence_output = gr.Slider(
                label="Confidence",
                minimum=0,
                maximum=1,
                value=0,
                interactive=False
            )
            toxicity_output = gr.Textbox(label="Toxicity Score", placeholder="Toxicity score will appear here...")
            bias_output = gr.Textbox(label="Bias Score", placeholder="Bias score will appear here...")
            threshold_display = gr.HTML()

        # Right Column: Paraphrased Output (if Toxic)
        with gr.Column(scale=1, min_width=400):
            with gr.Accordion("Paraphrased Output (if Toxic)", open=False):
                paraphrased_comment_output = gr.Textbox(label="Paraphrased Comment", placeholder="Paraphrased comment will appear here if the input is toxic...")
                paraphrased_prediction_output = gr.Textbox(label="Paraphrased Prediction", placeholder="Prediction will appear here...")
                paraphrased_label_display = gr.HTML()
                paraphrased_confidence_output = gr.Slider(
                    label="Paraphrased Confidence",
                    minimum=0,
                    maximum=1,
                    value=0,
                    interactive=False
                )
                paraphrased_toxicity_output = gr.Textbox(label="Paraphrased Toxicity Score", placeholder="Toxicity score will appear here...")
                paraphrased_bias_output = gr.Textbox(label="Paraphrased Bias Score", placeholder="Bias score will appear here...")
                semantic_similarity_output = gr.Textbox(label="Semantic Similarity", placeholder="Semantic similarity score will appear here...")
                emotion_shift_output = gr.Textbox(label="Emotion Shift", placeholder="Emotion shift will appear here...")
                empathy_score_output = gr.Textbox(label="Empathy Score", placeholder="Empathy score will appear here...")
                bleu_score_output = gr.Textbox(label="BLEU Score", placeholder="BLEU score will appear here...")
                rouge_scores_output = gr.Textbox(label="ROUGE Scores", placeholder="ROUGE scores will appear here...")
                entailment_score_output = gr.Textbox(label="Entailment Score (Factual Consistency)", placeholder="Entailment score will appear here...")

    # History and Feedback Sections
    with gr.Row():
        with gr.Column(scale=1):
            with gr.Accordion("Prediction History", open=False):
                history_output = gr.JSON(label="Previous Predictions")

        with gr.Column(scale=1):
            with gr.Accordion("Provide Feedback", open=False):
                feedback_input = gr.Radio(
                    choices=["Yes, the prediction was correct", "No, the prediction was incorrect"],
                    label="Was this prediction correct?"
                )
                feedback_comment = gr.Textbox(label="Additional Comments (optional)", placeholder="Let us know your thoughts...")
                feedback_submit = gr.Button("Submit Feedback")
                feedback_output = gr.Textbox(label="Feedback Status")

    def handle_classification(comment, history):
        if history is None:
            history = []
        (
            prediction, confidence, color, toxicity_score, bias_score,
            paraphrased_comment, paraphrased_prediction, paraphrased_confidence,
            paraphrased_color, paraphrased_toxicity_score, paraphrased_bias_score,
            semantic_similarity, emotion_shift, empathy_score,
            bleu_score, rouge_scores, entailment_score
        ) = classify_toxic_comment(comment)
        
        history.append({
            "comment": comment,
            "prediction": prediction,
            "confidence": confidence,
            "toxicity_score": toxicity_score,
            "bias_score": bias_score,
            "paraphrased_comment": paraphrased_comment,
            "paraphrased_prediction": paraphrased_prediction,
            "paraphrased_confidence": paraphrased_confidence,
            "paraphrased_toxicity_score": paraphrased_toxicity_score,
            "paraphrased_bias_score": paraphrased_bias_score,
            "semantic_similarity": semantic_similarity,
            "emotion_shift": emotion_shift,
            "empathy_score": empathy_score,
            "bleu_score": bleu_score,
            "rouge_scores": rouge_scores,
            "entailment_score": entailment_score
        })
        
        threshold_message = "High Confidence" if confidence >= 0.7 else "Low Confidence"
        threshold_color = "green" if confidence >= 0.7 else "orange"
        toxicity_display = f"{toxicity_score} (Scale: 0 to 1, lower is less toxic)" if toxicity_score is not None else "N/A"
        bias_display = f"{bias_score} (Scale: 0 to 1, lower indicates less bias)" if bias_score is not None else "N/A"
        
        paraphrased_comment_display = paraphrased_comment if paraphrased_comment else "N/A (Comment was non-toxic)"
        paraphrased_prediction_display = paraphrased_prediction if paraphrased_prediction else "N/A"
        paraphrased_confidence_display = paraphrased_confidence if paraphrased_confidence else 0
        paraphrased_toxicity_display = f"{paraphrased_toxicity_score} (Scale: 0 to 1, lower is less toxic)" if paraphrased_toxicity_score is not None else "N/A"
        paraphrased_bias_display = f"{paraphrased_bias_score} (Scale: 0 to 1, lower indicates less bias)" if paraphrased_bias_score is not None else "N/A"
        paraphrased_label_html = (
            f"<span class='{'toxic-indicator' if 'Toxic' in paraphrased_prediction else 'nontoxic-indicator'}' "
            f"style='color: {paraphrased_color}; font-size: 20px; font-weight: bold;'>{paraphrased_prediction}</span>"
            if paraphrased_prediction else ""
        )
        semantic_similarity_display = f"{semantic_similarity} (Scale: 0 to 1, higher is better)" if semantic_similarity is not None else "N/A"
        emotion_shift_display = emotion_shift if emotion_shift else "N/A"
        empathy_score_display = f"{empathy_score} (Scale: 0 to 1, higher indicates more empathy)" if empathy_score is not None else "N/A"
        bleu_score_display = f"{bleu_score} (Scale: 0 to 1, higher is better)" if bleu_score is not None else "N/A"
        rouge_scores_display = (
            f"ROUGE-1: {rouge_scores['rouge1']}, ROUGE-2: {rouge_scores['rouge2']}, ROUGE-L: {rouge_scores['rougeL']}"
            if rouge_scores else "N/A"
        )
        entailment_score_display = f"{entailment_score} (Scale: 0 to 1, higher indicates better consistency)" if entailment_score is not None else "N/A"

        # Add visual indicator to the prediction
        prediction_class = "toxic-indicator" if "Toxic" in prediction else "nontoxic-indicator"
        prediction_html = f"<span class='{prediction_class}' style='color: {color}; font-size: 20px; font-weight: bold;'>{prediction}</span>"

        return (
            prediction, confidence, prediction_html, history, threshold_message, threshold_color,
            toxicity_display, bias_display,
            paraphrased_comment_display, paraphrased_prediction_display, paraphrased_confidence_display,
            paraphrased_toxicity_display, paraphrased_bias_display, paraphrased_label_html,
            semantic_similarity_display, emotion_shift_display, empathy_score_display,
            bleu_score_display, rouge_scores_display, entailment_score_display
        )

    def handle_feedback(feedback, comment):
        return f"Thank you for your feedback: {feedback}\nAdditional comment: {comment}"

    submit_btn.click(
        fn=lambda: (
            "Classifying... <span class='loading'>⏳</span>", 0, "", None, "", "", 
            "Calculating... <span class='loading'>⏳</span>", "Calculating... <span class='loading'>⏳</span>", 
            "Paraphrasing... <span class='loading'>⏳</span>", "Calculating... <span class='loading'>⏳</span>", 0, 
            "Calculating... <span class='loading'>⏳</span>", "Calculating... <span class='loading'>⏳</span>", "", 
            "Calculating... <span class='loading'>⏳</span>", "Calculating... <span class='loading'>⏳</span>", 
            "Calculating... <span class='loading'>⏳</span>", "Calculating... <span class='loading'>⏳</span>", 
            "Calculating... <span class='loading'>⏳</span>", "Calculating... <span class='loading'>⏳</span>"
        ),  # Show loading state with animation
        inputs=[],
        outputs=[
            prediction_output, confidence_output, label_display, history_output, threshold_display, threshold_display,
            toxicity_output, bias_output,
            paraphrased_comment_output, paraphrased_prediction_output, paraphrased_confidence_output,
            paraphrased_toxicity_output, paraphrased_bias_output, paraphrased_label_display,
            semantic_similarity_output, emotion_shift_output, empathy_score_output,
            bleu_score_output, rouge_scores_output, entailment_score_output
        ]
    ).then(
        fn=handle_classification,
        inputs=[comment_input, history_output],
        outputs=[
            prediction_output, confidence_output, label_display, history_output, threshold_display, threshold_display,
            toxicity_output, bias_output,
            paraphrased_comment_output, paraphrased_prediction_output, paraphrased_confidence_output,
            paraphrased_toxicity_output, paraphrased_bias_output, paraphrased_label_display,
            semantic_similarity_output, emotion_shift_output, empathy_score_output,
            bleu_score_output, rouge_scores_output, entailment_score_output
        ]
    ).then(
        fn=lambda prediction, confidence, html: html,
        inputs=[prediction_output, confidence_output, label_display],
        outputs=label_display
    ).then(
        fn=lambda threshold_message, threshold_color: f"<span style='color: {threshold_color}; font-size: 16px;'>{threshold_message}</span>",
        inputs=[threshold_display, threshold_display],
        outputs=threshold_display
    )

    feedback_submit.click(
        fn=handle_feedback,
        inputs=[feedback_input, feedback_comment],
        outputs=feedback_output
    )

    clear_btn.click(
        fn=clear_inputs,
        inputs=[],
        outputs=[
            comment_input, confidence_output, label_display, history_output, toxicity_output, bias_output,
            paraphrased_comment_output, paraphrased_prediction_output, paraphrased_confidence_output,
            paraphrased_toxicity_output, paraphrased_bias_output, paraphrased_label_display,
            semantic_similarity_output, emotion_shift_output, empathy_score_output,
            bleu_score_output, rouge_scores_output, entailment_score_output
        ]
    )

    gr.Markdown(
        """
        ---
        **About**: This app is part of a four-stage pipeline for automated toxic comment moderation with emotional intelligence via RLHF. Built with ❤️ using Hugging Face and Gradio.
        """
    )

demo.launch()