File size: 12,966 Bytes
acb15e9 1a05d7c b0b9ee6 28bfdd4 1a05d7c 28bfdd4 da013d9 b0b9ee6 da013d9 b0b9ee6 da013d9 b0b9ee6 da013d9 1a05d7c b0b9ee6 da013d9 b0b9ee6 da013d9 28bfdd4 da013d9 28bfdd4 da013d9 28bfdd4 da013d9 28bfdd4 da013d9 b0b9ee6 da013d9 28bfdd4 da013d9 28bfdd4 da013d9 28bfdd4 da013d9 28bfdd4 da013d9 28bfdd4 da013d9 b0b9ee6 da013d9 b0b9ee6 da013d9 b0b9ee6 da013d9 28bfdd4 b0b9ee6 28bfdd4 b0b9ee6 28bfdd4 da013d9 1a05d7c da013d9 28bfdd4 da013d9 28bfdd4 da013d9 28bfdd4 da013d9 28bfdd4 b0b9ee6 da013d9 28bfdd4 da013d9 b0b9ee6 da013d9 28bfdd4 da013d9 28bfdd4 b0b9ee6 28bfdd4 da013d9 b0b9ee6 da013d9 28bfdd4 da013d9 661ba69 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 |
import gradio as gr
from transformers import pipeline
from translatepy import Translator
import logging
import random
import time
import nltk
from nltk.tokenize import sent_tokenize, word_tokenize
import os
from typing import Dict, Optional
from functools import lru_cache
# Configure logging with more detailed format
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s',
handlers=[
logging.StreamHandler(),
logging.FileHandler('app.log')
]
)
logger = logging.getLogger(__name__)
# Environment configuration with defaults
class Config:
NLTK_DATA = os.getenv('NLTK_DATA', '/home/user/nltk_data')
CACHE_DIR = os.getenv('CACHE_DIR', '/home/user/model_cache')
MAX_TEXT_LENGTH = 10000
CHUNK_SIZE = 500
# Set up NLTK data path with error handling
def setup_nltk():
try:
os.makedirs(Config.NLTK_DATA, exist_ok=True)
nltk.data.path.append(Config.NLTK_DATA)
required_packages = ['punkt']
for package in required_packages:
try:
nltk.data.find(f'tokenizers/{package}')
except LookupError:
nltk.download(package, download_dir=Config.NLTK_DATA, quiet=True)
except Exception as e:
logger.error(f"NLTK setup failed: {str(e)}")
raise
class TextHumanizer:
def __init__(self, cache_dir: str = Config.CACHE_DIR):
"""Initialize with better error handling and resource management"""
try:
os.makedirs(cache_dir, exist_ok=True)
# Initialize models with timeout and retry logic
self.detector = self._init_pipeline(
"text-classification",
"roberta-base-openai-detector",
cache_dir
)
self.humanizer = self._init_pipeline(
"text2text-generation",
"facebook/bart-large-cnn",
cache_dir
)
self.translator = Translator()
# Move prompts to a separate configuration file in production
self.tone_prompts = {
"Casual": [
"Rewrite this casually as if you're texting a friend: {text}",
"Make this sound like natural conversation: {text}",
"Convert this to everyday spoken English: {text}"
],
"Business": [
"Rephrase this in professional corporate language: {text}",
"Transform this into formal business communication: {text}",
"Rewrite for a professional email: {text}"
],
"Academic": [
"Rephrase this in scholarly academic language: {text}",
"Convert to academic paper style: {text}",
"Rewrite for a research publication: {text}"
],
"Creative": [
"Transform this into vivid, imaginative writing: {text}",
"Rewrite with creative metaphors and sensory details: {text}",
"Convert to engaging storytelling style: {text}"
]
}
self.human_patterns = self._load_patterns()
except Exception as e:
logger.error(f"Initialization failed: {str(e)}")
raise
@staticmethod
def _init_pipeline(task: str, model: str, cache_dir: str, max_retries: int = 3):
"""Initialize pipeline with retry logic"""
for attempt in range(max_retries):
try:
return pipeline(task, model=model, cache_dir=cache_dir, device=-1)
except Exception as e:
if attempt == max_retries - 1:
raise
logger.warning(f"Pipeline initialization attempt {attempt + 1} failed: {str(e)}")
time.sleep(2 ** attempt) # Exponential backoff
@staticmethod
def _load_patterns():
"""Load human-like patterns with enhanced variety"""
return {
'fillers': ["well", "you know", "actually", "I mean", "basically",
"to be honest", "kind of", "sort of", "like"],
'contractions': {
"cannot": "can't",
"could not": "couldn't",
"would not": "wouldn't",
"is not": "isn't",
"do not": "don't",
"will not": "won't",
"should not": "shouldn't",
"have not": "haven't"
},
'sentence_variants': [
lambda s: s.lower(),
lambda s: s.capitalize(),
lambda s: s[:-1] + ", which is interesting." if s.endswith('.') else s,
lambda s: s[:-1] + ", you know?" if s.endswith('.') else s,
lambda s: s[:-1] + "..." if s.endswith('.') else s
]
}
@lru_cache(maxsize=1000)
def _add_human_touches(self, text: str) -> str:
"""Apply multiple layers of human-like modifications with caching"""
try:
sentences = sent_tokenize(text)
# Enhanced sentence modification with better randomization
modified_sentences = []
for sent in sentences:
if random.random() < 0.4:
filler = random.choice(self.human_patterns['fillers'])
sent = f"{filler}, {sent.lower()}"
# Smart sentence splitting for long sentences
if len(sent.split()) > 12 and random.random() < 0.3:
words = word_tokenize(sent)
split_point = len(words)//2 + random.randint(-2, 2)
modified_sentences.extend([
' '.join(words[:split_point]) + ',',
' '.join(words[split_point:])
])
else:
modified_sentences.append(sent)
# Apply contractions and variations
text = ' '.join(modified_sentences)
for formal, casual in self.human_patterns['contractions'].items():
text = text.replace(f" {formal} ", f" {casual} ")
# Apply sentence variants with natural distribution
final_sentences = []
for sent in sent_tokenize(text):
if random.random() < 0.7: # 70% chance of modification
sent = random.choice(self.human_patterns['sentence_variants'])(sent)
final_sentences.append(sent)
return ' '.join(final_sentences)
except Exception as e:
logger.error(f"Humanization error: {str(e)}")
return text
def detect_ai_text(self, text: str) -> float:
"""Enhanced AI detection with better chunk handling"""
try:
if not text.strip():
return 0.0
chunks = [text[i:i+Config.CHUNK_SIZE] for i in range(0, len(text), Config.CHUNK_SIZE)]
scores = []
for chunk in chunks:
if len(chunk.strip()) < 50: # Skip very short chunks
continue
result = self.detector(chunk)[0]
if result['label'] == 'ARTIFICIAL':
scores.append(result['score'])
return sum(scores)/len(scores) if scores else 0.0
except Exception as e:
logger.error(f"Detection error: {str(e)}")
return 0.0
def humanize_text(self, text: str, tone: str, translate_to: Optional[str] = None) -> str:
"""Improved humanization pipeline with better error handling and quality control"""
try:
if not text or len(text) > Config.MAX_TEXT_LENGTH:
raise ValueError(f"Text must be between 1 and {Config.MAX_TEXT_LENGTH} characters")
# Track processing metrics
metrics = {'start_time': time.time()}
original_score = self.detect_ai_text(text)
logger.info(f"Initial AI score: {original_score:.2f}")
# Generate humanized text with enhanced parameters
prompt = random.choice(self.tone_prompts[tone]).format(text=text)
generated = self.humanizer(
prompt,
max_length=min(len(text)*2, 1024),
temperature=0.9,
top_p=0.95,
num_beams=4,
repetition_penalty=1.2,
no_repeat_ngram_size=3
)[0]['generated_text']
# Multi-pass humanization with quality control
humanized = self._add_human_touches(generated)
final_score = self.detect_ai_text(humanized)
# Adaptive humanization based on scores
if final_score > original_score * 0.8:
logger.info("Applying additional humanization pass")
humanized = self._add_human_touches(humanized)
# Translation with error handling
if translate_to and translate_to != "None":
try:
lang_code = translate_to.split()[0]
humanized = self.translator.translate(humanized, lang_code).result
except Exception as e:
logger.error(f"Translation failed: {str(e)}")
raise ValueError(f"Translation failed: {str(e)}")
metrics['processing_time'] = time.time() - metrics['start_time']
logger.info(f"Processing completed in {metrics['processing_time']:.2f} seconds")
return humanized
except Exception as e:
logger.error(f"Humanization failed: {str(e)}")
raise
def create_interface():
"""Create Gradio interface with improved error handling and user experience"""
try:
humanizer = TextHumanizer()
setup_nltk()
def process_text(text: str, tone: str, translate_to: str) -> Dict:
try:
if not text.strip():
return {
"data": ["Please enter some text to process"],
"success": False,
"error": "Empty input"
}
start_time = time.time()
result = humanizer.humanize_text(text, tone, translate_to)
processing_time = time.time() - start_time
return {
"data": [result],
"success": True,
"metrics": {
"processing_time": round(processing_time, 2),
"characters_processed": len(text),
"words_processed": len(text.split())
}
}
except Exception as e:
logger.error(f"Text processing failed: {str(e)}")
return {
"data": [],
"success": False,
"error": str(e)
}
iface = gr.Interface(
fn=process_text,
inputs=[
gr.Textbox(
label="Input Text",
lines=5,
placeholder="Enter text to humanize..."
),
gr.Dropdown(
choices=list(humanizer.tone_prompts.keys()),
label="Writing Style",
value="Casual"
),
gr.Dropdown(
choices=["None"] + [f"{c} ({n})" for c, n in [
("da", "Danish"), ("no", "Norwegian"),
("sv", "Swedish"), ("es", "Spanish"),
("fr", "French"), ("de", "German")
]],
label="Translate to",
value="None"
)
],
outputs=gr.JSON(),
title="Advanced AI Text Humanizer",
description="Transform AI-generated text into more natural, human-like writing",
examples=[
["Large language models demonstrate remarkable capabilities in natural language understanding tasks.", "Casual", "None"],
["The implementation requires careful consideration of multiple interdependent factors.", "Business", "es (Spanish)"]
],
flagging_mode=None
)
iface.launch(
server_name="0.0.0.0",
server_port=7860,
share=True
)
except Exception as e:
logger.error(f"Interface creation failed: {str(e)}")
raise
if __name__ == "__main__":
create_interface() |