Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -4,169 +4,129 @@ import yt_dlp
|
|
4 |
import os
|
5 |
import subprocess
|
6 |
import json
|
|
|
7 |
import time
|
8 |
import langdetect
|
9 |
import uuid
|
10 |
-
from transformers import AutoTokenizer, AutoModelForCausalLM
|
11 |
|
12 |
-
# Load Hugging Face
|
13 |
-
HF_TOKEN = os.
|
14 |
-
|
15 |
-
print("Starting the program...")
|
16 |
model_path = "Qwen/Qwen2.5-7B-Instruct"
|
17 |
-
|
18 |
-
# **Efficient Model Loading**
|
19 |
-
bnb_config = BitsAndBytesConfig(load_in_8bit=True) # Use 8-bit precision to reduce memory usage
|
20 |
-
|
21 |
-
device = "cuda" if torch.cuda.is_available() else "cpu"
|
22 |
-
print(f"Using device: {device}")
|
23 |
-
|
24 |
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
|
25 |
-
model = AutoModelForCausalLM.from_pretrained(
|
26 |
-
|
27 |
-
torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32,
|
28 |
-
quantization_config=bnb_config, # Load in 8-bit to save memory
|
29 |
-
trust_remote_code=True
|
30 |
-
).to(device).eval()
|
31 |
print("Model successfully loaded.")
|
32 |
|
|
|
33 |
def generate_unique_filename(extension):
|
34 |
return f"{uuid.uuid4()}{extension}"
|
35 |
|
|
|
36 |
def cleanup_files(*files):
|
37 |
for file in files:
|
38 |
if file and os.path.exists(file):
|
39 |
os.remove(file)
|
40 |
print(f"Removed file: {file}")
|
41 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
42 |
def download_youtube_audio(url):
|
43 |
-
"""Downloads audio from a YouTube video and converts it to WAV format."""
|
44 |
-
print(f"Downloading audio from YouTube: {url}")
|
45 |
output_path = generate_unique_filename(".wav")
|
46 |
-
|
47 |
ydl_opts = {
|
48 |
'format': 'bestaudio/best',
|
49 |
-
'postprocessors': [{
|
50 |
-
|
51 |
-
|
52 |
-
'preferredquality': '192',
|
53 |
-
}],
|
54 |
-
'outtmpl': output_path[:-4] # Remove .wav to prevent duplication
|
55 |
}
|
|
|
|
|
|
|
56 |
|
57 |
-
|
58 |
-
with yt_dlp.YoutubeDL(ydl_opts) as ydl:
|
59 |
-
ydl.download([url])
|
60 |
-
return output_path if os.path.exists(output_path) else "Download Failed"
|
61 |
-
except Exception as e:
|
62 |
-
return f"Error downloading audio: {str(e)}"
|
63 |
-
|
64 |
def transcribe_audio(file_path):
|
65 |
-
"""Transcribes audio using `insanely-fast-whisper` and handles large files efficiently."""
|
66 |
-
print(f"Starting transcription of file: {file_path}")
|
67 |
-
temp_audio = None
|
68 |
-
|
69 |
if file_path.endswith(('.mp4', '.avi', '.mov', '.flv')):
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
file_path = temp_audio # Use extracted audio file
|
75 |
-
|
76 |
output_file = generate_unique_filename(".json")
|
77 |
command = [
|
78 |
-
"insanely-fast-whisper",
|
79 |
-
"--
|
80 |
-
"--
|
81 |
-
"--model-name", "openai/whisper-large-v3",
|
82 |
-
"--task", "transcribe",
|
83 |
-
"--timestamp", "chunk",
|
84 |
"--transcript-path", output_file
|
85 |
]
|
86 |
-
|
87 |
-
try:
|
88 |
-
subprocess.run(command, check=True)
|
89 |
-
except Exception as e:
|
90 |
-
return f"Error in transcription: {str(e)}"
|
91 |
|
92 |
-
|
93 |
-
result
|
94 |
-
|
95 |
-
with open(output_file, "r") as f:
|
96 |
-
data = json.load(f) # Load full JSON safely
|
97 |
-
result = [chunk.get("text", "") for chunk in data]
|
98 |
-
except Exception as e:
|
99 |
-
return f"Error reading transcription file: {str(e)}"
|
100 |
-
|
101 |
-
cleanup_files(output_file)
|
102 |
-
if temp_audio:
|
103 |
-
cleanup_files(temp_audio)
|
104 |
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
""
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
response = tokenizer.decode(output_ids[0], skip_special_tokens=True)
|
125 |
-
except Exception as e:
|
126 |
-
response = f"Error generating summary: {str(e)}"
|
127 |
-
summary_result.append(response)
|
128 |
-
|
129 |
-
return "\n\n".join(summary_result)
|
130 |
|
|
|
131 |
def process_youtube(url):
|
132 |
-
"""Handles YouTube video processing: downloads audio, transcribes it, and cleans up."""
|
133 |
if not url:
|
134 |
-
return "Please enter a YouTube URL.", None
|
135 |
-
|
136 |
audio_file = download_youtube_audio(url)
|
137 |
-
|
138 |
-
return audio_file, None
|
139 |
-
|
140 |
-
transcription = transcribe_audio(audio_file)
|
141 |
-
cleanup_files(audio_file) # Clean up the downloaded file
|
142 |
-
return transcription, None
|
143 |
|
|
|
144 |
def process_uploaded_video(video_path):
|
145 |
-
|
146 |
-
transcription = transcribe_audio(video_path)
|
147 |
-
return transcription, None
|
148 |
|
149 |
-
|
|
|
|
|
150 |
gr.Markdown("""
|
151 |
-
|
152 |
-
|
153 |
""")
|
154 |
-
|
155 |
with gr.Tabs():
|
156 |
with gr.TabItem("📤 Video Upload"):
|
157 |
-
video_input = gr.
|
158 |
video_button = gr.Button("🚀 Process Video")
|
159 |
|
160 |
with gr.TabItem("🔗 YouTube Link"):
|
161 |
-
url_input = gr.Textbox(
|
162 |
url_button = gr.Button("🚀 Process URL")
|
163 |
-
|
164 |
transcription_output = gr.Textbox(label="📝 Transcription", lines=10, show_copy_button=True)
|
165 |
summary_output = gr.Textbox(label="📊 Summary", lines=10, show_copy_button=True)
|
166 |
summary_button = gr.Button("📝 Generate Summary")
|
167 |
-
|
168 |
video_button.click(process_uploaded_video, inputs=[video_input], outputs=[transcription_output, summary_output])
|
169 |
url_button.click(process_youtube, inputs=[url_input], outputs=[transcription_output, summary_output])
|
170 |
-
summary_button.click(
|
171 |
|
172 |
-
demo.launch(
|
|
|
4 |
import os
|
5 |
import subprocess
|
6 |
import json
|
7 |
+
import moviepy.editor as mp
|
8 |
import time
|
9 |
import langdetect
|
10 |
import uuid
|
11 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
12 |
|
13 |
+
# Load Hugging Face Model
|
14 |
+
HF_TOKEN = os.environ.get("HF_TOKEN")
|
|
|
|
|
15 |
model_path = "Qwen/Qwen2.5-7B-Instruct"
|
16 |
+
print(f"Loading model {model_path}...")
|
|
|
|
|
|
|
|
|
|
|
|
|
17 |
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
|
18 |
+
model = AutoModelForCausalLM.from_pretrained(model_path, torch_dtype=torch.float16, trust_remote_code=True).cuda()
|
19 |
+
model = model.eval()
|
|
|
|
|
|
|
|
|
20 |
print("Model successfully loaded.")
|
21 |
|
22 |
+
# Generate unique filenames
|
23 |
def generate_unique_filename(extension):
|
24 |
return f"{uuid.uuid4()}{extension}"
|
25 |
|
26 |
+
# Cleanup temporary files
|
27 |
def cleanup_files(*files):
|
28 |
for file in files:
|
29 |
if file and os.path.exists(file):
|
30 |
os.remove(file)
|
31 |
print(f"Removed file: {file}")
|
32 |
|
33 |
+
# Extract audio from video
|
34 |
+
def extract_audio(video_path):
|
35 |
+
audio_path = generate_unique_filename(".wav")
|
36 |
+
try:
|
37 |
+
video = mp.VideoFileClip(video_path)
|
38 |
+
video.audio.write_audiofile(audio_path)
|
39 |
+
return audio_path
|
40 |
+
except Exception as e:
|
41 |
+
print(f"Error extracting audio: {e}")
|
42 |
+
return None
|
43 |
+
|
44 |
+
# Download YouTube audio
|
45 |
def download_youtube_audio(url):
|
|
|
|
|
46 |
output_path = generate_unique_filename(".wav")
|
|
|
47 |
ydl_opts = {
|
48 |
'format': 'bestaudio/best',
|
49 |
+
'postprocessors': [{'key': 'FFmpegExtractAudio', 'preferredcodec': 'wav'}],
|
50 |
+
'outtmpl': output_path,
|
51 |
+
'keepvideo': True,
|
|
|
|
|
|
|
52 |
}
|
53 |
+
with yt_dlp.YoutubeDL(ydl_opts) as ydl:
|
54 |
+
ydl.download([url])
|
55 |
+
return output_path if os.path.exists(output_path) else None
|
56 |
|
57 |
+
# Transcribe audio using Whisper
|
|
|
|
|
|
|
|
|
|
|
|
|
58 |
def transcribe_audio(file_path):
|
|
|
|
|
|
|
|
|
59 |
if file_path.endswith(('.mp4', '.avi', '.mov', '.flv')):
|
60 |
+
file_path = extract_audio(file_path)
|
61 |
+
if not file_path:
|
62 |
+
return "Audio extraction failed.", None
|
63 |
+
|
|
|
|
|
64 |
output_file = generate_unique_filename(".json")
|
65 |
command = [
|
66 |
+
"insanely-fast-whisper", "--file-name", file_path,
|
67 |
+
"--device-id", "cpu", "--model-name", "openai/whisper-large-v3",
|
68 |
+
"--task", "transcribe", "--timestamp", "chunk",
|
|
|
|
|
|
|
69 |
"--transcript-path", output_file
|
70 |
]
|
|
|
|
|
|
|
|
|
|
|
71 |
|
72 |
+
result = subprocess.run(command, capture_output=True, text=True)
|
73 |
+
if result.returncode != 0:
|
74 |
+
return f"Transcription failed: {result.stderr}", None
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
75 |
|
76 |
+
if not os.path.exists(output_file):
|
77 |
+
return "Transcription file missing.", None
|
78 |
+
|
79 |
+
with open(output_file, "r") as f:
|
80 |
+
transcription = json.load(f)
|
81 |
+
|
82 |
+
text = transcription.get("text", " ".join([chunk["text"] for chunk in transcription.get("chunks", [])]))
|
83 |
+
cleanup_files(output_file, file_path)
|
84 |
+
return text, None
|
85 |
+
|
86 |
+
# Generate summary using Qwen Model
|
87 |
+
def generate_summary(transcription):
|
88 |
+
detected_language = langdetect.detect(transcription)
|
89 |
+
prompt = f"""Summarize the following transcription in 150-300 words:
|
90 |
+
Language: {detected_language}
|
91 |
+
{transcription[:100000]}"""
|
92 |
+
|
93 |
+
response, _ = model.chat(tokenizer, prompt, history=[])
|
94 |
+
return response
|
|
|
|
|
|
|
|
|
|
|
|
|
95 |
|
96 |
+
# Process YouTube video
|
97 |
def process_youtube(url):
|
|
|
98 |
if not url:
|
99 |
+
return "Please enter a valid YouTube URL.", None
|
|
|
100 |
audio_file = download_youtube_audio(url)
|
101 |
+
return transcribe_audio(audio_file) if audio_file else ("Download failed.", None)
|
|
|
|
|
|
|
|
|
|
|
102 |
|
103 |
+
# Process uploaded video
|
104 |
def process_uploaded_video(video_path):
|
105 |
+
return transcribe_audio(video_path)
|
|
|
|
|
106 |
|
107 |
+
# Gradio Interface
|
108 |
+
demo = gr.Blocks()
|
109 |
+
with demo:
|
110 |
gr.Markdown("""
|
111 |
+
# 🎥 AI Video Transcription & Summary
|
112 |
+
Upload a video or provide a YouTube link to get a transcription and AI-generated summary.
|
113 |
""")
|
114 |
+
|
115 |
with gr.Tabs():
|
116 |
with gr.TabItem("📤 Video Upload"):
|
117 |
+
video_input = gr.File(label="Upload a video file")
|
118 |
video_button = gr.Button("🚀 Process Video")
|
119 |
|
120 |
with gr.TabItem("🔗 YouTube Link"):
|
121 |
+
url_input = gr.Textbox(label="Paste YouTube URL")
|
122 |
url_button = gr.Button("🚀 Process URL")
|
123 |
+
|
124 |
transcription_output = gr.Textbox(label="📝 Transcription", lines=10, show_copy_button=True)
|
125 |
summary_output = gr.Textbox(label="📊 Summary", lines=10, show_copy_button=True)
|
126 |
summary_button = gr.Button("📝 Generate Summary")
|
127 |
+
|
128 |
video_button.click(process_uploaded_video, inputs=[video_input], outputs=[transcription_output, summary_output])
|
129 |
url_button.click(process_youtube, inputs=[url_input], outputs=[transcription_output, summary_output])
|
130 |
+
summary_button.click(generate_summary, inputs=[transcription_output], outputs=[summary_output])
|
131 |
|
132 |
+
demo.launch()
|