from transformers import AutoModelForCausalLM, AutoTokenizer,BlenderbotForConditionalGeneration import torch import gradio as gr #model_name = "facebook/blenderbot-400M-distill" model_name = "microsoft/DialoGPT-medium" chat_token = AutoTokenizer.from_pretrained(model_name) model = AutoModelForCausalLM.from_pretrained(model_name) def converse(user_input, chat_history=[]): user_input_ids = chat_token(user_input + chat_token.eos_token, return_tensors='pt').input_ids # keep history in the tensor chatbot_input_ids = torch.cat([torch.LongTensor(chat_history), user_input_ids], dim=-1) # get response chat_history = mdl.generate(chatbot_input_ids, max_length=1000, pad_token_id=chat_token.eos_token_id).tolist() print(chat_history) response = chat_token.decode(chat_history[0]).split("<|endoftext|>") print("Starting to print response...") print(response) # html for display html = "