import os import re import gradio as gr from transformers import DonutProcessor, VisionEncoderDecoderModel import torch import traceback # 1) Load pretrained Donut model and processor MODEL_NAME = "naver-clova-ix/donut-base-finetuned-cord-v2" processor = DonutProcessor.from_pretrained(MODEL_NAME) model = VisionEncoderDecoderModel.from_pretrained(MODEL_NAME) # 2) Set device and move model device = "cuda" if torch.cuda.is_available() else "cpu" model.to(device) # 3) Inference function with debugging def ocr_donut(image): try: if image is None: return {"error": "No image provided."} # Prepare prompt and inputs task_prompt = "" decoder_input_ids = processor.tokenizer( task_prompt, add_special_tokens=False, return_tensors="pt" ).input_ids.to(device) # Convert to tensor pixel_values = processor(image.convert("RGB"), return_tensors="pt").pixel_values.to(device) # Generate outputs outputs = model.generate( pixel_values, decoder_input_ids=decoder_input_ids, max_length=model.config.decoder.max_position_embeddings, pad_token_id=processor.tokenizer.pad_token_id, eos_token_id=processor.tokenizer.eos_token_id, use_cache=True, bad_words_ids=[[processor.tokenizer.unk_token_id]], return_dict_in_generate=True, ) # Decode and clean up sequence = processor.batch_decode(outputs.sequences)[0] sequence = sequence.replace(processor.tokenizer.eos_token, "").replace(processor.tokenizer.pad_token, "") sequence = re.sub(r"<.*?>", "", sequence, count=1).strip() json_output = processor.token2json(sequence) return {"result": json_output} except Exception: tb = traceback.format_exc() print(tb) return {"error": tb} # 4) Build Gradio interface demo = gr.Interface( fn=ocr_donut, inputs=gr.Image(type="pil", label="Upload Document Image"), outputs=gr.JSON(label="Output"), title="Donut OCR Gradio App", description="Upload a document image and get structured JSON output. Errors will be shown for debugging." ) # 5) Launch for Spaces demo.launch( server_name="0.0.0.0", server_port=int(os.environ.get("PORT", 7860)), debug=True )