# app.py # ============= # This is a complete app.py file for a Gradio application that allows users to upload an audio file and generate a video with frequency visualization. import gradio as gr import numpy as np import matplotlib.pyplot as plt import librosa import librosa.display import os import moviepy.video.io.ImageSequenceClip # Function to generate frequency visualization frames from audio def generate_frequency_visualization(audio_path): try: # Load the audio file y, sr = librosa.load(audio_path, sr=None) if sr == 0 or len(y) == 0: raise ValueError("Invalid audio file: sampling rate or audio data is zero.") # Perform Short-Time Fourier Transform (STFT) D = librosa.amplitude_to_db(np.abs(librosa.stft(y)), ref=np.max) # Create a directory to save the frames os.makedirs('frames', exist_ok=True) # Generate and save each frame for i, frame in enumerate(D.T): plt.figure(figsize=(10, 6)) librosa.display.specshow(frame.reshape(1, -1), sr=sr, x_axis='time', y_axis='log') plt.axis('off') plt.savefig(f'frames/frame_{i:04d}.png', bbox_inches='tight', pad_inches=0) plt.close() return 'frames' except Exception as e: print(f"Error generating frequency visualization: {e}") # Fallback: Generate a default visualization generate_default_visualization() return 'frames' # Function to generate a default visualization def generate_default_visualization(): # Create a directory to save the frames os.makedirs('frames', exist_ok=True) # Generate and save default frames for i in range(10): # Generate 10 default frames plt.figure(figsize=(10, 6)) plt.plot(np.sin(np.linspace(0, 10, 100)) * (i + 1)) plt.axis('off') plt.savefig(f'frames/frame_{i:04d}.png', bbox_inches='tight', pad_inches=0) plt.close() # Function to create a video from the generated frames def create_video_from_frames(frames_directory): try: # Get the list of frame files frame_files = [os.path.join(frames_directory, f) for f in os.listdir(frames_directory) if f.endswith('.png')] frame_files.sort() if not frame_files: raise ValueError("No frames found to create the video.") # Create a video from the frames clip = moviepy.video.io.ImageSequenceClip.ImageSequenceClip(frame_files, fps=10) # Set fps to 10 for better visibility video_path = 'output_video.mp4' clip.write_videofile(video_path, codec='libx264') return video_path except Exception as e: print(f"Error creating video from frames: {e}") return None # Gradio interface function def process_audio(audio): audio_path = audio frames_directory = generate_frequency_visualization(audio_path) video_path = create_video_from_frames(frames_directory) return video_path # Create the Gradio interface with explanations and recommendations iface = gr.Interface( fn=process_audio, inputs=gr.Audio(type="filepath", label="Upload Audio File"), outputs=gr.Video(label="Generated Video"), title="Audio Frequency Visualization", description="Upload an audio file to generate a video with frequency visualization. " "Supported file types: WAV, MP3, FLAC. " "Recommended file duration: 10 seconds to 5 minutes. " "If the file is invalid or cannot be processed, a default visualization will be generated.", ) # Launch the Gradio interface if __name__ == "__main__": iface.launch() # Dependencies # ============= # The following dependencies are required to run this app: # - librosa # - numpy # - matplotlib # - moviepy # - gradio # # You can install these dependencies using pip: # pip install librosa numpy matplotlib moviepy gradio