Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -4,9 +4,7 @@
|
|
4 |
|
5 |
import gradio as gr
|
6 |
import numpy as np
|
7 |
-
import matplotlib.pyplot as plt
|
8 |
import librosa
|
9 |
-
import librosa.display
|
10 |
import os
|
11 |
import cv2
|
12 |
|
@@ -24,29 +22,21 @@ def generate_frequency_visualization(audio_path, fps, num_bars):
|
|
24 |
# Perform Short-Time Fourier Transform (STFT)
|
25 |
hop_length = int(sr / fps) # Hop length to match the desired fps
|
26 |
S = np.abs(librosa.stft(y, n_fft=2048, hop_length=hop_length))
|
27 |
-
|
28 |
|
29 |
-
#
|
30 |
-
|
31 |
-
bar_heights = []
|
32 |
-
|
33 |
-
# Aggregate power for each bar
|
34 |
-
for i in range(len(S[0])):
|
35 |
-
frame = S[:, i]
|
36 |
-
bar_frame = [np.mean(frame[bins[j]:bins[j+1]]) for j in range(num_bars)]
|
37 |
-
bar_heights.append(bar_frame)
|
38 |
|
39 |
# Create a directory to save the frames
|
40 |
os.makedirs('frames', exist_ok=True)
|
41 |
|
42 |
# Generate and save each frame
|
43 |
-
for i
|
44 |
# Create black background
|
45 |
img = np.zeros((720, 1280, 3), dtype=np.uint8)
|
46 |
|
47 |
-
#
|
48 |
-
heights =
|
49 |
-
heights = (heights / np.max(heights) * 600).astype(int)
|
50 |
|
51 |
# Calculate bar positions
|
52 |
bar_width = 80
|
@@ -61,14 +51,14 @@ def generate_frequency_visualization(audio_path, fps, num_bars):
|
|
61 |
frame_path = f'frames/frame_{i:04d}.png'
|
62 |
cv2.imwrite(frame_path, img)
|
63 |
|
64 |
-
print(f"Generated {
|
65 |
return 'frames', duration
|
66 |
except Exception as e:
|
67 |
print(f"Error generating frequency visualization: {e}")
|
68 |
return None, None
|
69 |
|
70 |
# Function to create a video from the generated frames
|
71 |
-
def create_video_from_frames(frames_directory, audio_path, fps
|
72 |
try:
|
73 |
# Get the list of frame files
|
74 |
frame_files = [os.path.join(frames_directory, f) for f in os.listdir(frames_directory) if f.endswith('.png')]
|
@@ -109,7 +99,7 @@ def process_audio(audio):
|
|
109 |
num_bars = 12
|
110 |
frames_directory, duration = generate_frequency_visualization(audio_path, fps, num_bars)
|
111 |
if frames_directory:
|
112 |
-
video_path = create_video_from_frames(frames_directory, audio_path, fps
|
113 |
return video_path
|
114 |
else:
|
115 |
return None
|
@@ -135,6 +125,6 @@ if __name__ == "__main__":
|
|
135 |
# The following dependencies are required to run this app:
|
136 |
# - librosa
|
137 |
# - numpy
|
138 |
-
# - matplotlib
|
139 |
# - opencv-python
|
|
|
140 |
# - ffmpeg (installed separately)
|
|
|
4 |
|
5 |
import gradio as gr
|
6 |
import numpy as np
|
|
|
7 |
import librosa
|
|
|
8 |
import os
|
9 |
import cv2
|
10 |
|
|
|
22 |
# Perform Short-Time Fourier Transform (STFT)
|
23 |
hop_length = int(sr / fps) # Hop length to match the desired fps
|
24 |
S = np.abs(librosa.stft(y, n_fft=2048, hop_length=hop_length))
|
25 |
+
S = S[:num_bars, :] # Limit the frequency bands to match the number of bars
|
26 |
|
27 |
+
# Normalize frequency power
|
28 |
+
S = S / np.max(S)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
29 |
|
30 |
# Create a directory to save the frames
|
31 |
os.makedirs('frames', exist_ok=True)
|
32 |
|
33 |
# Generate and save each frame
|
34 |
+
for i in range(S.shape[1]):
|
35 |
# Create black background
|
36 |
img = np.zeros((720, 1280, 3), dtype=np.uint8)
|
37 |
|
38 |
+
# Get the bar heights for the current frame
|
39 |
+
heights = (S[:, i] * 600).astype(int)
|
|
|
40 |
|
41 |
# Calculate bar positions
|
42 |
bar_width = 80
|
|
|
51 |
frame_path = f'frames/frame_{i:04d}.png'
|
52 |
cv2.imwrite(frame_path, img)
|
53 |
|
54 |
+
print(f"Generated {S.shape[1]} frames for visualization.")
|
55 |
return 'frames', duration
|
56 |
except Exception as e:
|
57 |
print(f"Error generating frequency visualization: {e}")
|
58 |
return None, None
|
59 |
|
60 |
# Function to create a video from the generated frames
|
61 |
+
def create_video_from_frames(frames_directory, audio_path, fps):
|
62 |
try:
|
63 |
# Get the list of frame files
|
64 |
frame_files = [os.path.join(frames_directory, f) for f in os.listdir(frames_directory) if f.endswith('.png')]
|
|
|
99 |
num_bars = 12
|
100 |
frames_directory, duration = generate_frequency_visualization(audio_path, fps, num_bars)
|
101 |
if frames_directory:
|
102 |
+
video_path = create_video_from_frames(frames_directory, audio_path, fps)
|
103 |
return video_path
|
104 |
else:
|
105 |
return None
|
|
|
125 |
# The following dependencies are required to run this app:
|
126 |
# - librosa
|
127 |
# - numpy
|
|
|
128 |
# - opencv-python
|
129 |
+
# - matplotlib
|
130 |
# - ffmpeg (installed separately)
|