Spaces:
Sleeping
Sleeping
File size: 18,622 Bytes
5ac1897 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 |
import torch
import numpy as np
from typing import Union, List, overload
from wis3d import Wis3D
from lib.platform import PM
from lib.utils.geometry.rotation import axis_angle_to_matrix
class HWis3D(Wis3D):
''' Abstraction of Wis3D for human motion. '''
def __init__(
self,
out_path : str = PM.outputs / 'wis3d',
seq_name : str = 'debug',
xyz_pattern : tuple = ('x', 'y', 'z'),
):
seq_name = seq_name.replace('/', '-')
super().__init__(out_path, seq_name, xyz_pattern)
def add_text(self, text:str):
'''
Add an item of vertices whose name is used to put the text message. *Dirty use!*
### Args
- text: str
'''
fake_verts = np.array([[0, 0, 0]])
self.add_point_cloud(
vertices = fake_verts,
colors = None,
name = text,
)
def add_text_seq(self, texts:List[str], offset:int=0):
'''
Add an item of vertices whose name is used to put the text message. *Dirty use!*
### Args
- texts: List[str]
- The list of text messages.
- offset: int, default = 0
- The offset for the sequence index.
'''
fake_verts = np.array([[0, 0, 0]])
for i, text in enumerate(texts):
self.set_scene_id(i + offset)
self.add_point_cloud(
vertices = fake_verts,
colors = None,
name = text,
)
def add_image_seq(self, imgs:List[np.ndarray], name:str, offset:int=0):
'''
Add an item of vertices whose name is used to put the image. *Dirty use!*
### Args
- imgs: List[np.ndarray]
- The list of images.
- offset: int, default = 0
- The offset for the sequence index.
'''
for i, img in enumerate(imgs):
self.set_scene_id(i + offset)
self.add_image(
image = img,
name = name,
)
def add_motion_mesh(
self,
verts : Union[torch.Tensor, np.ndarray],
faces : Union[torch.Tensor, np.ndarray],
name : str,
offset: int = 0,
):
'''
Add sequence of vertices and face(s) to the wis3d viewer.
### Args
- verts: torch.Tensor or np.ndarray, (L, V, 3), L ~ sequence length, V ~ number of vertices
- faces: torch.Tensor or np.ndarray, (F, 3) or (L, F, 3), F ~ number of faces, L ~ sequence length
- name: str
- The name of the point cloud.
- offset: int, default = 0
- The offset for the sequence index.
'''
assert (len(verts.shape) == 3), 'The input `verts` should have 3 dimensions: (L, V, 3).'
assert (verts.shape[-1] == 3), 'The last dimension of `verts` should be 3.'
if isinstance(verts, np.ndarray):
verts = torch.from_numpy(verts)
if isinstance(faces, torch.Tensor):
faces = faces.detach().cpu().numpy()
if len(faces.shape) == 2:
faces = faces[None].repeat(verts.shape[0], 0)
assert (len(faces.shape) == 3), 'The input `faces` should have 2 or 3 dimensions: (F, 3) or (L, F, 3).'
assert (faces.shape[-1] == 3), 'The last dimension of `faces` should be 3.'
assert (verts.shape[0] == faces.shape[0]), 'The first dimension of `verts` and `faces` should be the same.'
L, _, _ = verts.shape
verts = verts.detach().cpu()
# Add vertices frame by frame.
for i in range(L):
self.set_scene_id(i + offset)
self.add_mesh(
vertices = verts[i],
faces = faces[i],
name = name,
) # type: ignore
# Reset Wis3D scene id.
self.set_scene_id(0)
def add_motion_verts(
self,
verts : Union[torch.Tensor, np.ndarray],
name : str,
offset: int = 0,
):
'''
Add sequence of vertices to the wis3d viewer.
### Args
- verts: torch.Tensor or np.ndarray, (L, V, 3), L ~ sequence length, V ~ number of vertices
- name: str
- The name of the point cloud.
- offset: int, default = 0
- The offset for the sequence index.
'''
assert (len(verts.shape) == 3), 'The input `verts` should have 3 dimensions: (L, V, 3).'
assert (verts.shape[-1] == 3), 'The last dimension of `verts` should be 3.'
if isinstance(verts, np.ndarray):
verts = torch.from_numpy(verts)
L, _, _ = verts.shape
verts = verts.detach().cpu()
# Add vertices frame by frame.
for i in range(L):
self.set_scene_id(i + offset)
self.add_point_cloud(
vertices = verts[i],
colors = None,
name = name,
)
# Reset Wis3D scene id.
self.set_scene_id(0)
def add_motion_skel(
self,
joints : Union[torch.Tensor, np.ndarray],
bones : Union[list, torch.Tensor],
colors : Union[list, torch.Tensor],
name : str,
offset : int = 0,
threshold : float = 0.5,
):
'''
Add sequence of joints with specific skeleton to the wis3d viewer.
### Args
- joints: torch.Tensor or np.ndarray, shape = (L, J, 3) or (L, J, 4), L ~ sequence length, J ~ number of joints
- bones: list
- A list of bones of the skeleton, i.e. the edge in the kinematic trees.
- colors: list
- name: str
- The name of the point cloud.
- offset: int, default = 0
- The offset for the sequence index.
- threshold: float, default = 0.5
- Threshold to filter the confidence of the joints. It's useless when no confidence provided.
'''
assert (len(joints.shape) == 3), 'The input `joints` should have 3 dimensions: (L, J, 3).'
assert (joints.shape[-1] == 3 or joints.shape[-1] == 4), 'The last dimension of `joints` should be 3 or 4.'
if isinstance(joints, np.ndarray):
joints = torch.from_numpy(joints)
if isinstance(bones, List):
bones = torch.tensor(bones)
if isinstance(colors, List):
colors = torch.tensor(colors)
# Get the sequence length.
joints = joints.detach().cpu() # (L, J, 3) or (L, J, 4)
L, J, D = joints.shape
if D == 4:
conf = joints[:, :, 3]
joints = joints[:, :, :3]
else:
conf = None
# Add vertices frame by frame.
for i in range(L):
self.set_scene_id(i + offset)
bones_s = joints[i][bones[:, 0]]
bones_e = joints[i][bones[:, 1]]
if conf is not None:
mask = torch.logical_and(conf[i][bones[:, 0]] > threshold, conf[i][bones[:, 1]] > threshold)
bones_s, bones_e = bones_s[mask], bones_e[mask]
if len(bones_s) > 0:
self.add_lines(
start_points = bones_s,
end_points = bones_e,
colors = colors,
name = name,
)
# Reset Wis3D scene id.
self.set_scene_id(0)
def add_vec_seq(
self,
vecs : torch.Tensor,
name : str,
offset : int = 0,
seg_num : int = 16,
):
'''
Add directional line sequence to the wis3d viewer.
The line will be gradient colored, and the direction of the vector is visualized as from dark to light.
### Args
- vecs: torch.Tensor, (L, 2, 3) or (L, N, 2, 3), L ~ sequence length, N ~ vectors counts in one frame,
then give the start 3D point and end 3D point.
- name: str
- The name of the vector.
- offset: int, default = 0
- The offset for the sequence index.
- seg_num: int, default = 16
- The number of segments for gradient color, will just change the visualization effect.
'''
if len(vecs.shape) == 3:
vecs = vecs[:, None, :, :] # (L, 2, 3) -> (L, 1, 2, 3)
assert (len(vecs.shape) == 4), 'The input `vecs` should have 3 or 4 dimensions: (L, 2, 3) or (L, N, 2, 3).'
assert (vecs.shape[-2:] == (2, 3)), f'The last two dimension of `vecs` should be (2, 3), but got vecs.shape = {vecs.shape}.'
# Get the sequence length.
L, N, _, _ = vecs.shape
vecs = vecs.detach().cpu()
# Cut the line into segments.
steps_delta = (vecs[:, :, [1]] - vecs[:, :, [0]]) / (seg_num + 1) # (L, N, 1, 3)
steps_cnt = torch.arange(seg_num + 1).reshape((1, 1, seg_num + 1, 1)) # (1, 1, seg_num+1, 1)
segs = steps_delta * steps_cnt + vecs[:, :, [0]] # (L, N, seg_num+1, 3)
start_pts = segs[:, :, :-1] # (L, N, seg_num, 3)
end_pts = segs[:, :, 1:] # (L, N, seg_num, 3)
# Prepare the gradient colors.
grad_colors = torch.linspace(0, 255, seg_num).reshape((1, seg_num, 1)).repeat(N, 1, 3) # (N, seg_num, 3)
# Add vertices frame by frame.
for i in range(L):
self.set_scene_id(i + offset)
self.add_lines(
start_points = start_pts[i].reshape(-1, 3),
end_points = end_pts[i].reshape(-1, 3),
colors = grad_colors.reshape(-1, 3),
name = name,
)
# Reset Wis3D scene id.
self.set_scene_id(0)
def add_traj(
self,
positions : torch.Tensor,
name : str,
offset : int = 0,
):
'''
Visualize the the positions change across the time as trajectory. The newer position will be brighter.
### Args
- positions: torch.Tensor, (L, 3), L ~ sequence length
- name: str
- The name of the trajectory.
- offset: int, default = 0
- The offset for the sequence index.
'''
assert (len(positions.shape) == 2), 'The input `positions` should have 2 dimensions: (L, 3).'
assert (positions.shape[-1] == 3), 'The last dimension of `positions` should be 3.'
# Get the sequence length.
L, _ = positions.shape
positions = positions.detach().cpu()
traj = positions[[0]] # (1, 3)
# Prepare the gradient colors.
grad_colors = torch.linspace(208, 48, L).reshape((L, 1)).repeat(1, 3) # (L, 3)
for i in range(L):
traj = torch.cat((traj, positions[[i]]), dim=0) # (i+2, 3)
self.set_scene_id(i + offset)
self.add_lines(
start_points = traj[:-1],
end_points = traj[1:],
colors = grad_colors[-(i+1):],
name = name,
)
# Reset Wis3D scene id.
self.set_scene_id(0)
def add_sphere_sensors(
self,
positions : torch.Tensor,
radius : Union[torch.Tensor, float],
activities : torch.Tensor,
name : str,
):
'''
Draw the sphere sensors with different colors to represent the activities. The color is from white to red.
### Args
- positions: torch.Tensor, (N, 3), N ~ number of sensors
- radius: torch.Tensor or float, (N,), N ~ number of sensors
- activities: torch.Tensor, (N)
- The activities of the sensors, from 0 to 1.
- name: str
- The name of the spheres.
'''
assert (len(positions.shape) == 2), 'The input `positions` should have 2 dimensions: (N, 3).'
assert (positions.shape[-1] == 3), 'The last dimension of `positions` should be 3.'
N, _ = positions.shape
if isinstance(radius, float):
radius = torch.Tensor(radius).reshape(1).repeat(N) # (N)
elif len(radius.shape) == 0:
radius = radius.reshape(1).repeat(N)
colors = torch.ones(size=(N, 3)).float()
colors[:, 0] = 255
colors[:, 1] = (1 - activities) ** 2 * 255
colors[:, 2] = (1 - activities) ** 2 * 255
self.add_spheres(
centers = positions,
radius = radius,
colors = colors,
name = name,
)
def add_sphere_sensors_seq(
self,
positions : torch.Tensor,
radius : Union[torch.Tensor, float],
activities : torch.Tensor,
name : str,
offset : int = 0,
):
'''
Draw the sphere sensors with different colors to represent the activities. The color is from white to red.
### Args
- positions: torch.Tensor, (L, N, 3), N ~ number of sensors
- radius: torch.Tensor or float, (L, N,), N ~ number of sensors
- activities: torch.Tensor, (L, N)
- The activities of the sensors, from 0 to 1.
- name: str
- The name of the spheres.
- offset: int, default = 0
- The offset for the sequence index.
'''
assert (len(positions.shape) == 3), 'The input `positions` should have 3 dimensions: (L, N, 3).'
assert (positions.shape[-1] == 3), 'The last dimension of `positions` should be 3.'
L, N, _ = positions.shape
for i in range(L):
self.set_scene_id(i + offset)
self.add_sphere_sensors(
positions = positions[i],
radius = radius,
activities = activities[i],
name = name,
)
# ===== Overriding methods from original Wis3D. =====
def add_lines(
self,
start_points: torch.Tensor,
end_points : torch.Tensor,
colors : Union[list, torch.Tensor] = None,
name : str = None,
thickness : float = 0.01,
resolution : int = 4,
):
'''
Add lines by points. Overriding the original `add_lines` method to use mesh to provide browser from crash.
### Args
- start_points: torch.Tensor, (N, 3), N ~ number of lines
- end_points: torch.Tensor, (N, 3), N ~ number of lines
- colors: list or torch.Tensor, (N, 3)
- The color of the lines, from 0 to 255.
- name: str
- The name of the vector.
- thickness: float, default = 0.01
- The thickness of the lines.
- resolution: int, default = 3
- The 'line' was actually a poly-cylinder, and the resolution how it looks like a cylinder.
'''
if isinstance(colors, List):
colors = torch.tensor(colors)
assert (len(start_points.shape) == 2), 'The input `start_points` should have 2 dimensions: (N, 3).'
assert (len(end_points.shape) == 2), 'The input `end_points` should have 2 dimensions: (N, 3).'
assert (start_points.shape == end_points.shape), 'The input `start_points` and `end_points` should have the same shape.'
# ===== Prepare the data. =====
N, _ = start_points.shape
device = start_points.device
dir = end_points - start_points # (N, 3)
dis = torch.norm(dir, dim=-1, keepdim=True) # (N, 1)
dir = dir / dis # (N, 3)
K = resolution + 1 # the first & the last point share the position
# Find out directions that are negative to the y-axis.
vec_y = torch.Tensor([[0, 1, 0]]).float().to(device) # (1, 3)
neg_mask = (dir @ vec_y.transpose(-1, -2) < 0).squeeze() # (N,)
# ===== Get the ending surface vertices of the cylinder. =====
# 1. Get the surface vertices template in x-z plain.
radius = torch.linspace(0, 2*torch.pi, K) # (K,)
v_ending_temp = \
torch.stack(
[torch.cos(radius), torch.zeros_like(radius), torch.sin(radius)],
dim = -1
) # (K, 3)
v_ending_temp *= thickness # (K, 3)
v_ending_temp = v_ending_temp[None].repeat(N, 1, 1) # (N, K, 3)
# 2. Rotate the template plane to the direction of the line.
rot_axis = torch.linalg.cross(vec_y, dir) # (N, 3)
rot_axis[neg_mask] *= -1
rot_mat = axis_angle_to_matrix(rot_axis) # (N, 3, 3)
v_ending_temp = v_ending_temp @ rot_mat.transpose(-1, -2)
v_ending_temp = v_ending_temp.to(device)
# 3. Move the template plane to the start and end points and get the cylinder vertices.
v_cylinder_start = v_ending_temp + start_points[:, None] # (N, K, 3)
v_cylinder_end = v_ending_temp + end_points[:, None] # (N, K, 3)
# Swap the start and end points for the negative direction to adjust the normal direction.
v_cylinder_start[neg_mask], v_cylinder_end[neg_mask] = v_cylinder_end[neg_mask], v_cylinder_start[neg_mask]
v_cylinder = torch.cat([v_cylinder_start, v_cylinder_end], dim=1) # (N, 2*K, 3)
# ===== Calculate the face index. =====
idx = torch.arange(0, 2*K, device=device).to(device) # (2*K,)
idx_s, idx_e = idx[:K], idx[K:]
f_cylinder = torch.cat([
# Two ending surface.
torch.stack([idx_s[0].repeat(K-2), idx_s[1:-1], idx_s[2:]], dim=-1),
torch.stack([idx_e[0].repeat(K-2), idx_e[2:], idx_e[1:-1]], dim=-1),
# The side surface.
torch.stack([idx_e[:-1], idx_s[1:], idx_s[:-1]], dim=-1),
torch.stack([idx_e[:-1], idx_e[1:], idx_s[1:]], dim=-1),
], dim=0) # (4*K-4, 3)
f_cylinder = f_cylinder[None].repeat(N, 1, 1) # (N, 4*K-4, 3)
# ===== Calculate the face index. =====
if colors is not None:
c_cylinder = colors / 255.0 # (N, 3)
c_cylinder = c_cylinder[:, None].repeat(1, 2*K, 1) # (N, 2*K, 3)
else:
c_cylinder = None
N, V = v_cylinder.shape[:2]
v_cylinder = v_cylinder.reshape(-1, 3) # (N*(2*K), 3)
# ===== Manually match the points index before flatten. =====
f_cylinder = f_cylinder + torch.arange(0, N, device=device).unsqueeze(1).unsqueeze(1) * V
f_cylinder = f_cylinder.reshape(-1, 3) # (N*(4*K-4), 3)
if c_cylinder is not None:
c_cylinder = c_cylinder.reshape(-1, 3) # (N*(2*K), 3)
self.add_mesh(
vertices = v_cylinder,
vertex_colors = c_cylinder,
faces = f_cylinder,
name = name,
) |