Spaces:
Sleeping
Sleeping
File size: 8,463 Bytes
5ac1897 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 |
from lib.kits.basic import *
def T_to_Rt(
T : Union[torch.Tensor, np.ndarray],
):
''' Get (..., 3, 3) rotation matrix and (..., 3) translation vector from (..., 4, 4) transformation matrix. '''
if isinstance(T, np.ndarray):
T = torch.from_numpy(T).float()
assert T.shape[-2:] == (4, 4), f'T.shape[-2:] = {T.shape[-2:]}'
R = T[..., :3, :3]
t = T[..., :3, 3]
return R, t
def Rt_to_T(
R : Union[torch.Tensor, np.ndarray],
t : Union[torch.Tensor, np.ndarray],
):
''' Get (..., 4, 4) transformation matrix from (..., 3, 3) rotation matrix and (..., 3) translation vector. '''
if isinstance(R, np.ndarray):
R = torch.from_numpy(R).float()
if isinstance(t, np.ndarray):
t = torch.from_numpy(t).float()
assert R.shape[-2:] == (3, 3), f'R should be a (..., 3, 3) matrix, but R.shape = {R.shape}'
assert t.shape[-1] == 3, f't should be a (..., 3) vector, but t.shape = {t.shape}'
assert R.shape[:-2] == t.shape[:-1], f'R and t should have the same shape prefix but {R.shape[:-2]} != {t.shape[:-1]}'
T = torch.eye(4, device=R.device, dtype=R.dtype).repeat(R.shape[:-2] + (1, 1)) # (..., 4, 4)
T[..., :3, :3] = R
T[..., :3, 3] = t
return T
def apply_Ts_on_pts(Ts:torch.Tensor, pts:torch.Tensor):
'''
Apply transformation matrix `T` on the points `pts`.
### Args
- Ts: torch.Tensor, (...B, 4, 4)
- pts: torch.Tensor, (...B, N, 3)
'''
assert len(pts.shape) >= 3 and pts.shape[-1] == 3, f'Shape of pts should be (...B, N, 3) but {pts.shape}'
assert Ts.shape[-2:] == (4, 4), f'Shape of Ts should be (..., 4, 4) but {Ts.shape}'
assert Ts.device == pts.device, f'Device of Ts and pts should be the same but {Ts.device} != {pts.device}'
ret_pts = torch.einsum('...ij,...nj->...ni', Ts[..., :3, :3], pts) + Ts[..., None, :3, 3]
ret_pts = ret_pts.squeeze(0) # (B, N, 3)
return ret_pts
def apply_T_on_pts(T:torch.Tensor, pts:torch.Tensor):
'''
Apply transformation matrix `T` on the points `pts`.
### Args
- T: torch.Tensor, (4, 4)
- pts: torch.Tensor, (B, N, 3) or (N, 3)
'''
unbatched = len(pts.shape) == 2
if unbatched:
pts = pts[None]
ret = apply_Ts_on_pts(T[None], pts)
return ret.squeeze(0) if unbatched else ret
def apply_Ks_on_pts(Ks:torch.Tensor, pts:torch.Tensor):
'''
Apply intrinsic camera matrix `K` on the points `pts`, i.e. project the 3D points to 2D.
### Args
- Ks: torch.Tensor, (...B, 3, 3)
- pts: torch.Tensor, (...B, N, 3)
'''
assert len(pts.shape) >= 3 and pts.shape[-1] == 3, f'Shape of pts should be (...B, N, 3) but {pts.shape}'
assert Ks.shape[-2:] == (3, 3), f'Shape of Ks should be (..., 3, 3) but {Ks.shape}'
assert Ks.device == pts.device, f'Device of Ks and pts should be the same but {Ks.device} != {pts.device}'
pts_proj_homo = torch.einsum('...ij,...vj->...vi', Ks, pts)
pts_proj = pts_proj_homo[..., :2] / pts_proj_homo[..., 2:3]
return pts_proj
def apply_K_on_pts(K:torch.Tensor, pts:torch.Tensor):
'''
Apply intrinsic camera matrix `K` on the points `pts`, i.e. project the 3D points to 2D.
### Args
- K: torch.Tensor, (3, 3)
- pts: torch.Tensor, (B, N, 3) or (N, 3)
'''
unbatched = len(pts.shape) == 2
if unbatched:
pts = pts[None]
ret = apply_Ks_on_pts(K[None], pts)
return ret.squeeze(0) if unbatched else ret
def perspective_projection(
points : torch.Tensor,
translation : torch.Tensor,
focal_length : torch.Tensor,
camera_center : Optional[torch.Tensor] = None,
rotation : Optional[torch.Tensor] = None,
) -> torch.Tensor:
'''
Computes the perspective projection of a set of 3D points.
https://github.com/shubham-goel/4D-Humans/blob/6ec79656a23c33237c724742ca2a0ec00b398b53/hmr2/utils/geometry.py#L64-L102
### Args
- points: torch.Tensor, (B, N, 3)
- The input 3D points.
- translation: torch.Tensor, (B, 3)
- The 3D camera translation.
- focal_length: torch.Tensor, (B, 2)
- The focal length in pixels.
- camera_center: torch.Tensor, (B, 2)
- The camera center in pixels.
- rotation: torch.Tensor, (B, 3, 3)
- The camera rotation.
### Returns
- torch.Tensor, (B, N, 2)
- The projection of the input points.
'''
B = points.shape[0]
if rotation is None:
rotation = torch.eye(3, device=points.device, dtype=points.dtype).unsqueeze(0).expand(B, -1, -1)
if camera_center is None:
camera_center = torch.zeros(B, 2, device=points.device, dtype=points.dtype)
# Populate intrinsic camera matrix K.
K = torch.zeros([B, 3, 3], device=points.device, dtype=points.dtype)
K[:, 0, 0] = focal_length[:, 0]
K[:, 1, 1] = focal_length[:, 1]
K[:, 2, 2] = 1.
K[:, :-1, -1] = camera_center
# Transform points
points = torch.einsum('bij, bkj -> bki', rotation, points)
points = points + translation.unsqueeze(1)
# Apply perspective distortion
projected_points = points / points[:, :, -1].unsqueeze(-1)
# Apply camera intrinsics
projected_points = torch.einsum('bij, bkj -> bki', K, projected_points)
return projected_points[:, :, :-1]
def estimate_translation_np(S, joints_2d, joints_conf, focal_length=5000, img_size=224):
'''
Find camera translation that brings 3D joints S closest to 2D the corresponding joints_2d.
Copied from: https://github.com/nkolot/SPIN/blob/2476c436013055be5cb3905e4e4ecfa86966fac3/utils/geometry.py#L94-L132
### Args
- S: shape = (25, 3)
- 3D joint locations.
- joints: shape = (25, 3)
- 2D joint locations and confidence.
### Returns
- shape = (3,)
- Camera translation vector.
'''
num_joints = S.shape[0]
# focal length
f = np.array([focal_length,focal_length])
# optical center
center = np.array([img_size/2., img_size/2.])
# transformations
Z = np.reshape(np.tile(S[:,2],(2,1)).T,-1)
XY = np.reshape(S[:,0:2],-1)
O = np.tile(center,num_joints)
F = np.tile(f,num_joints)
weight2 = np.reshape(np.tile(np.sqrt(joints_conf),(2,1)).T,-1)
# least squares
Q = np.array([F*np.tile(np.array([1,0]),num_joints), F*np.tile(np.array([0,1]),num_joints), O-np.reshape(joints_2d,-1)]).T
c = (np.reshape(joints_2d,-1)-O)*Z - F*XY
# weighted least squares
W = np.diagflat(weight2)
Q = np.dot(W,Q)
c = np.dot(W,c)
# square matrix
A = np.dot(Q.T,Q)
b = np.dot(Q.T,c)
# solution
trans = np.linalg.solve(A, b)
return trans
def estimate_camera_trans(
S : torch.Tensor,
joints_2d : torch.Tensor,
focal_length : float = 5000.,
img_size : float = 224.,
conf_thre : float = 4.,
):
'''
Find camera translation that brings 3D joints S closest to 2D the corresponding joints_2d.
Modified from: https://github.com/nkolot/SPIN/blob/2476c436013055be5cb3905e4e4ecfa86966fac3/utils/geometry.py#L135-L157
### Args
- S: torch.Tensor, shape = (B, J, 3)
- 3D joint locations.
- joints: torch.Tensor, shape = (B, J, 3)
- Ground truth 2D joint locations and confidence.
- focal_length: float
- img_size: float
- conf_thre: float
- Confidence threshold to judge whether we use gt_kp2d or that from OpenPose.
### Returns
- torch.Tensor, shape = (B, 3)
- Camera translation vectors.
'''
device = S.device
B = len(S)
S = to_numpy(S)
joints_2d = to_numpy(joints_2d)
joints_conf = joints_2d[:, :, -1] # (B, J)
joints_2d = joints_2d[:, :, :-1] # (B, J, 2)
trans = np.zeros((S.shape[0], 3), dtype=np.float32)
# Find the translation for each example in the batch
for i in range(B):
conf_i = joints_conf[i]
# When the ground truth joints are not enough, use all the joints.
if conf_i[25:].sum() < conf_thre:
S_i = S[i]
joints_i = joints_2d[i]
else:
S_i = S[i, 25:]
conf_i = joints_conf[i, 25:]
joints_i = joints_2d[i, 25:]
trans[i] = estimate_translation_np(S_i, joints_i, conf_i, focal_length=focal_length, img_size=img_size)
return torch.from_numpy(trans).to(device) |