File size: 3,441 Bytes
5ac1897
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
# Copyright (c) OpenMMLab. All rights reserved.

import numpy as np

def _calc_distances(preds, targets, mask, normalize):
    """Calculate the normalized distances between preds and target.

    Note:
        batch_size: N
        num_keypoints: K
        dimension of keypoints: D (normally, D=2 or D=3)

    Args:
        preds (np.ndarray[N, K, D]): Predicted keypoint location.
        targets (np.ndarray[N, K, D]): Groundtruth keypoint location.
        mask (np.ndarray[N, K]): Visibility of the target. False for invisible
            joints, and True for visible. Invisible joints will be ignored for
            accuracy calculation.
        normalize (np.ndarray[N, D]): Typical value is heatmap_size

    Returns:
        np.ndarray[K, N]: The normalized distances. \
            If target keypoints are missing, the distance is -1.
    """
    N, K, _ = preds.shape
    # set mask=0 when normalize==0
    _mask = mask.copy()
    _mask[np.where((normalize == 0).sum(1))[0], :] = False
    distances = np.full((N, K), -1, dtype=np.float32)
    # handle invalid values
    normalize[np.where(normalize <= 0)] = 1e6
    distances[_mask] = np.linalg.norm(
        ((preds - targets) / normalize[:, None, :])[_mask], axis=-1)
    return distances.T


def _distance_acc(distances, thr=0.5):
    """Return the percentage below the distance threshold, while ignoring
    distances values with -1.

    Note:
        batch_size: N
    Args:
        distances (np.ndarray[N, ]): The normalized distances.
        thr (float): Threshold of the distances.

    Returns:
        float: Percentage of distances below the threshold. \
            If all target keypoints are missing, return -1.
    """
    distance_valid = distances != -1
    num_distance_valid = distance_valid.sum()
    if num_distance_valid > 0:
        return (distances[distance_valid] < thr).sum() / num_distance_valid
    return -1


def keypoint_pck_accuracy(pred, gt, mask, thr, normalize):
    """Calculate the pose accuracy of PCK for each individual keypoint and the
    averaged accuracy across all keypoints for coordinates.

    Note:
        PCK metric measures accuracy of the localization of the body joints.
        The distances between predicted positions and the ground-truth ones
        are typically normalized by the bounding box size.
        The threshold (thr) of the normalized distance is commonly set
        as 0.05, 0.1 or 0.2 etc.

        - batch_size: N
        - num_keypoints: K

    Args:
        pred (np.ndarray[N, K, 2]): Predicted keypoint location.
        gt (np.ndarray[N, K, 2]): Groundtruth keypoint location.
        mask (np.ndarray[N, K]): Visibility of the target. False for invisible
            joints, and True for visible. Invisible joints will be ignored for
            accuracy calculation.
        thr (float): Threshold of PCK calculation.
        normalize (np.ndarray[N, 2]): Normalization factor for H&W.

    Returns:
        tuple: A tuple containing keypoint accuracy.

        - acc (np.ndarray[K]): Accuracy of each keypoint.
        - avg_acc (float): Averaged accuracy across all keypoints.
        - cnt (int): Number of valid keypoints.
    """
    distances = _calc_distances(pred, gt, mask, normalize)

    acc = np.array([_distance_acc(d, thr) for d in distances])
    valid_acc = acc[acc >= 0]
    cnt = len(valid_acc)
    avg_acc = valid_acc.mean() if cnt > 0 else 0
    return acc, avg_acc, cnt