Spaces:
Starting
on
L4
Starting
on
L4
File size: 12,300 Bytes
5ac1897 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 |
from lib.kits.basic import *
import os
import cv2
import braceexpand
from typing import List, Union
from .crop import *
def expand_urls(urls: Union[str, List[str]]):
def expand_url(s):
return os.path.expanduser(os.path.expandvars(s))
if isinstance(urls, str):
urls = [urls]
urls = [u for url in urls for u in braceexpand.braceexpand(expand_url(url))]
return urls
def get_augm_args(img_augm_cfg:Optional[DictConfig]):
'''
Perform some random augmentation to the image and patch it. Here we perform generate augmentation arguments
according to the configuration and random seed.
Briefly speaking, things done here are: size scale, color scale, rotate, flip, extreme crop, translate.
'''
sample_args = {
'bbox_scale' : 1.0,
'color_scale' : [1.0, 1.0, 1.0],
'rot_deg' : 0.0,
'do_flip' : False,
'do_extreme_crop' : False,
'tx_ratio' : 0.0,
'ty_ratio' : 0.0,
}
if img_augm_cfg is not None:
sample_args['tx_ratio'] += np.clip(np.random.randn(), -1.0, 1.0) * img_augm_cfg.trans_factor
sample_args['ty_ratio'] += np.clip(np.random.randn(), -1.0, 1.0) * img_augm_cfg.trans_factor
sample_args['bbox_scale'] += np.clip(np.random.randn(), -1.0, 1.0) * img_augm_cfg.bbox_scale_factor
if np.random.random() <= img_augm_cfg.rot_aug_rate:
sample_args['rot_deg'] += np.clip(np.random.randn(), -2.0, 2.0) * img_augm_cfg.rot_factor
if np.random.random() <= img_augm_cfg.flip_aug_rate:
sample_args['do_flip'] = True
if np.random.random() <= img_augm_cfg.extreme_crop_aug_rate:
sample_args['do_extreme_crop'] = True
c_up = 1.0 + img_augm_cfg.half_color_scale
c_low = 1.0 - img_augm_cfg.half_color_scale
sample_args['color_scale'] = [
np.random.uniform(c_low, c_up),
np.random.uniform(c_low, c_up),
np.random.uniform(c_low, c_up),
]
return sample_args
def rotate_2d(pt_2d: np.ndarray, rot_rad: float) -> np.ndarray:
'''
Rotate a 2D point on the x-y plane.
Copied from: https://github.com/shubham-goel/4D-Humans/blob/6ec79656a23c33237c724742ca2a0ec00b398b53/hmr2/datasets/utils.py#L90-L104
### Args
- pt_2d: np.ndarray
- Input 2D point with shape (2,).
- rot_rad: float
- Rotation angle.
### Returns
- np.ndarray
- Rotated 2D point.
'''
x = pt_2d[0]
y = pt_2d[1]
sn, cs = np.sin(rot_rad), np.cos(rot_rad)
xx = x * cs - y * sn
yy = x * sn + y * cs
return np.array([xx, yy], dtype=np.float32)
def extreme_cropping_aggressive(center_x: float, center_y: float, width: float, height: float, keypoints_2d: np.ndarray) -> Tuple:
"""
Perform aggressive extreme cropping.
Copied from: https://github.com/shubham-goel/4D-Humans/blob/6ec79656a23c33237c724742ca2a0ec00b398b53/hmr2/datasets/utils.py#L978-L1025
### Args
- center_x: float
- x coordinate of bounding box center.
- center_y: float
- y coordinate of bounding box center.
- width: float
- Bounding box width.
- height: float
- Bounding box height.
- keypoints_2d: np.ndarray
- Array of shape (N, 3) containing 2D keypoint locations.
- rescale: float
- Scale factor to rescale bounding boxes computed from the keypoints.
### Returns
- center_x: float
- x coordinate of bounding box center.
- center_y: float
- y coordinate of bounding box center.
- bbox_size: float
- Bounding box size.
"""
p = torch.rand(1).item()
if full_body(keypoints_2d):
if p < 0.2:
center_x, center_y, width, height = crop_to_hips(center_x, center_y, width, height, keypoints_2d)
elif p < 0.3:
center_x, center_y, width, height = crop_to_shoulders(center_x, center_y, width, height, keypoints_2d)
elif p < 0.4:
center_x, center_y, width, height = crop_to_head(center_x, center_y, width, height, keypoints_2d)
elif p < 0.5:
center_x, center_y, width, height = crop_torso_only(center_x, center_y, width, height, keypoints_2d)
elif p < 0.6:
center_x, center_y, width, height = crop_rightarm_only(center_x, center_y, width, height, keypoints_2d)
elif p < 0.7:
center_x, center_y, width, height = crop_leftarm_only(center_x, center_y, width, height, keypoints_2d)
elif p < 0.8:
center_x, center_y, width, height = crop_legs_only(center_x, center_y, width, height, keypoints_2d)
elif p < 0.9:
center_x, center_y, width, height = crop_rightleg_only(center_x, center_y, width, height, keypoints_2d)
else:
center_x, center_y, width, height = crop_leftleg_only(center_x, center_y, width, height, keypoints_2d)
elif upper_body(keypoints_2d):
if p < 0.2:
center_x, center_y, width, height = crop_to_shoulders(center_x, center_y, width, height, keypoints_2d)
elif p < 0.4:
center_x, center_y, width, height = crop_to_head(center_x, center_y, width, height, keypoints_2d)
elif p < 0.6:
center_x, center_y, width, height = crop_torso_only(center_x, center_y, width, height, keypoints_2d)
elif p < 0.8:
center_x, center_y, width, height = crop_rightarm_only(center_x, center_y, width, height, keypoints_2d)
else:
center_x, center_y, width, height = crop_leftarm_only(center_x, center_y, width, height, keypoints_2d)
return center_x, center_y, max(width, height)
def gen_trans_from_patch_cv(
c_x : float,
c_y : float,
src_width : float,
src_height : float,
dst_width : float,
dst_height : float,
scale : float,
rot : float
) -> np.ndarray:
'''
Create transformation matrix for the bounding box crop.
Copied from: https://github.com/shubham-goel/4D-Humans/blob/6ec79656a23c33237c724742ca2a0ec00b398b53/hmr2/datasets/utils.py#L107-L154
### Args
- c_x: float
- Bounding box center x coordinate in the original image.
- c_y: float
- Bounding box center y coordinate in the original image.
- src_width: float
- Bounding box width.
- src_height: float
- Bounding box height.
- dst_width: float
- Output box width.
- dst_height: float
- Output box height.
- scale: float
- Rescaling factor for the bounding box (augmentation).
- rot: float
- Random rotation applied to the box.
### Returns
- trans: np.ndarray
- Target geometric transformation.
'''
# augment size with scale
src_w = src_width * scale
src_h = src_height * scale
src_center = np.zeros(2)
src_center[0] = c_x
src_center[1] = c_y
# augment rotation
rot_rad = np.pi * rot / 180
src_downdir = rotate_2d(np.array([0, src_h * 0.5], dtype=np.float32), rot_rad)
src_rightdir = rotate_2d(np.array([src_w * 0.5, 0], dtype=np.float32), rot_rad)
dst_w = dst_width
dst_h = dst_height
dst_center = np.array([dst_w * 0.5, dst_h * 0.5], dtype=np.float32)
dst_downdir = np.array([0, dst_h * 0.5], dtype=np.float32)
dst_rightdir = np.array([dst_w * 0.5, 0], dtype=np.float32)
src = np.zeros((3, 2), dtype=np.float32)
src[0, :] = src_center
src[1, :] = src_center + src_downdir
src[2, :] = src_center + src_rightdir
dst = np.zeros((3, 2), dtype=np.float32)
dst[0, :] = dst_center
dst[1, :] = dst_center + dst_downdir
dst[2, :] = dst_center + dst_rightdir
trans = cv2.getAffineTransform(np.float32(src), np.float32(dst)) # (2, 3) # type: ignore
return trans
def generate_image_patch_cv2(
img : np.ndarray,
c_x : float,
c_y : float,
bb_width : float,
bb_height : float,
patch_width : float,
patch_height : float,
do_flip : bool,
scale : float,
rot : float,
border_mode = cv2.BORDER_CONSTANT,
border_value = 0,
) -> Tuple[np.ndarray, np.ndarray]:
'''
Crop the input image and return the crop and the corresponding transformation matrix.
Copied from: https://github.com/shubham-goel/4D-Humans/blob/6ec79656a23c33237c724742ca2a0ec00b398b53/hmr2/datasets/utils.py#L343-L386
### Args
- img: np.ndarray, shape = (H, W, 3)
- c_x: float
- Bounding box center x coordinate in the original image.
- c_y: float
- Bounding box center y coordinate in the original image.
- bb_width: float
- Bounding box width.
- bb_height: float
- Bounding box height.
- patch_width: float
- Output box width.
- patch_height: float
- Output box height.
- do_flip: bool
- Whether to flip image or not.
- scale: float
- Rescaling factor for the bounding box (augmentation).
- rot: float
- Random rotation applied to the box.
### Returns
- img_patch: np.ndarray
- Cropped image patch of shape (patch_height, patch_height, 3)
- trans: np.ndarray
- Transformation matrix.
'''
img_height, img_width, img_channels = img.shape
if do_flip:
img = img[:, ::-1, :]
c_x = img_width - c_x - 1
trans = gen_trans_from_patch_cv(c_x, c_y, bb_width, bb_height, patch_width, patch_height, scale, rot) # (2, 3)
img_patch = cv2.warpAffine(img, trans, (int(patch_width), int(patch_height)),
flags=cv2.INTER_LINEAR,
borderMode=border_mode,
borderValue=border_value,
) # type: ignore
# Force borderValue=cv2.BORDER_CONSTANT for alpha channel
if (img.shape[2] == 4) and (border_mode != cv2.BORDER_CONSTANT):
img_patch[:,:,3] = cv2.warpAffine(img[:,:,3], trans, (int(patch_width), int(patch_height)),
flags=cv2.INTER_LINEAR,
borderMode=cv2.BORDER_CONSTANT,
)
return img_patch, trans
def expand_to_aspect_ratio(input_shape, target_aspect_ratio=None):
'''
Increase the size of the bounding box to match the target shape.
Copied from https://github.com/shubham-goel/4D-Humans/blob/6ec79656a23c33237c724742ca2a0ec00b398b53/hmr2/datasets/utils.py#L14-L33
'''
if target_aspect_ratio is None:
return input_shape
try:
w , h = input_shape
except (ValueError, TypeError):
return input_shape
w_t, h_t = target_aspect_ratio
if h / w < h_t / w_t:
h_new = max(w * h_t / w_t, h)
w_new = w
else:
h_new = h
w_new = max(h * w_t / h_t, w)
if h_new < h or w_new < w:
breakpoint()
return np.array([w_new, h_new])
body_permutation = [0, 1, 5, 6, 7, 2, 3, 4, 8, 12, 13, 14, 9, 10, 11, 16, 15, 18, 17, 22, 23, 24, 19, 20, 21]
extra_permutation = [5, 4, 3, 2, 1, 0, 11, 10, 9, 8, 7, 6, 12, 13, 14, 15, 16, 17, 18]
FLIP_KP_PERMUTATION = body_permutation + [25 + i for i in extra_permutation]
def flip_lr_keypoints(joints: np.ndarray, width: float) -> np.ndarray:
"""
Flip 2D or 3D keypoints.
Modified from: https://github.com/shubham-goel/4D-Humans/blob/6ec79656a23c33237c724742ca2a0ec00b398b53/hmr2/datasets/utils.py#L448-L462
### Args
- joints: np.ndarray
- Array of shape (N, 3) or (N, 4) containing 2D or 3D keypoint locations and confidence.
- flip_permutation: list
- Permutation to apply after flipping.
### Returns
- np.ndarray
- Flipped 2D or 3D keypoints with shape (N, 3) or (N, 4) respectively.
"""
joints = joints.copy()
# Flip horizontal
joints[:, 0] = width - joints[:, 0] - 1
joints = joints[FLIP_KP_PERMUTATION]
return joints |