File size: 14,722 Bytes
5ac1897
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
from lib.kits.basic import *

import math
import webdataset as wds


from .utils import (
    get_augm_args,
    expand_to_aspect_ratio,
    generate_image_patch_cv2,
    flip_lr_keypoints,
    extreme_cropping_aggressive,
)


def apply_corrupt_filter(dataset:wds.WebDataset):
    AIC_TRAIN_CORRUPT_KEYS = {
        '0a047f0124ae48f8eee15a9506ce1449ee1ba669', '1a703aa174450c02fbc9cfbf578a5435ef403689',
        '0394e6dc4df78042929b891dbc24f0fd7ffb6b6d', '5c032b9626e410441544c7669123ecc4ae077058',
        'ca018a7b4c5f53494006ebeeff9b4c0917a55f07', '4a77adb695bef75a5d34c04d589baf646fe2ba35',
        'a0689017b1065c664daef4ae2d14ea03d543217e', '39596a45cbd21bed4a5f9c2342505532f8ec5cbb',
        '3d33283b40610d87db660b62982f797d50a7366b',
    }

    CORRUPT_KEYS = {
        *{f'aic-train/{k}' for k in AIC_TRAIN_CORRUPT_KEYS},
        *{f'aic-train-vitpose/{k}' for k in AIC_TRAIN_CORRUPT_KEYS},
    }

    dataset = dataset.select(lambda sample: (sample['__key__'] not in CORRUPT_KEYS))
    return dataset


def apply_multi_ppl_splitter(dataset:wds.WebDataset):
    '''
    Each item in the raw dataset contains multiple people, we need to split them into individual samples.
    Meanwhile, we also need to note down the person id (pid) for each sample.
    '''
    def multi_ppl_splitter(source):
        for item in source:
            data_multi_ppl = item['data.pyd']  # list of data for multiple people
            for pid, data in enumerate(data_multi_ppl):
                data['pid'] = pid

                if 'detection.npz' in item:
                    det_idx = data['extra_info']['detection_npz_idx']
                    mask = item['detection.npz']['masks'][det_idx]
                else:
                    mask = np.ones_like(item['jpg'][:, :, 0], dtype=bool)
                yield {
                    '__key__'  : item['__key__'] + f'_{pid}',
                    'img_name' : item['__key__'],
                    'img'      : item['jpg'],
                    'data'     : data,
                    'mask'     : mask,
                }

    return dataset.compose(multi_ppl_splitter)


def apply_keys_adapter(dataset:wds.WebDataset):
    ''' Adapt the keys of the items, so we can adapt different version of dataset. '''
    def keys_adapter(item):
        data = item['data']
        data['kp2d'] = data.pop('keypoints_2d')
        data['kp3d'] = data.pop('keypoints_3d')
        return item
    return dataset.map(keys_adapter)


def apply_bad_pgt_params_nan_suppressor(dataset:wds.WebDataset):
    ''' If the poses or betas contain NaN, we regard it as bad pseudo-GT and zero them out. '''
    def bad_pgt_params_suppressor(item):
        for side in ['orig', 'flip']:
            poses = item['data'][f'{side}_poses']  # (J, 3)
            betas = item['data'][f'{side}_betas']  # (10,)
            poses_has_nan = np.isnan(poses).any()
            betas_has_nan = np.isnan(betas).any()
            if poses_has_nan or betas_has_nan:
                item['data'][f'{side}_has_poses'] = False
                item['data'][f'{side}_has_betas'] = False
                if poses_has_nan:
                    item['data'][f'{side}_poses'][:] = 0
                if betas_has_nan:
                    item['data'][f'{side}_betas'][:] = 0
        return item
    dataset = dataset.map(bad_pgt_params_suppressor)
    return dataset


def apply_bad_pgt_params_kp2d_err_suppressor(dataset:wds.WebDataset, thresh:float=0.1):
    ''' If the 2D keypoints error of one single person is higher than the threshold, we regard it as bad pseudo-GT. '''
    if thresh > 0:
        def bad_pgt_params_suppressor(item):
            for side in ['orig', 'flip']:
                if thresh > 0:
                    kp2d_err = item['data'][f'{side}_kp2d_err']
                    is_valid_pgt = kp2d_err < thresh
                    item['data'][f'{side}_has_poses'] = is_valid_pgt
                    item['data'][f'{side}_has_betas'] = is_valid_pgt
            return item
        dataset = dataset.map(bad_pgt_params_suppressor)
    return dataset


def apply_bad_pgt_params_pve_max_suppressor(dataset:wds.WebDataset, thresh:float=0.1):
    ''' If the PVE-Max of one single person is higher than the threshold, we regard it as bad pseudo-GT. '''
    if thresh > 0:
        def bad_pgt_params_suppressor(item):
            for side in ['orig', 'flip']:
                if thresh > 0:
                    pve_max = item['data'][f'{side}_pve_max']
                    is_valid_pose = not math.isnan(pve_max)
                    is_valid_pgt = pve_max < thresh and is_valid_pose
                    item['data'][f'{side}_has_poses'] = is_valid_pgt
                    item['data'][f'{side}_has_betas'] = is_valid_pgt
            return item
        dataset = dataset.map(bad_pgt_params_suppressor)
    return dataset


def apply_bad_kp_suppressor(dataset:wds.WebDataset, thresh:float=0.0):
    ''' If the confidence of a keypoint is lower than the threshold, we reset it to 0. '''
    eps = 1e-6
    if thresh > eps:
        def bad_kp_suppressor(item):
            if thresh > 0:
                kp2d = item['data']['kp2d']
                kp2d_conf = np.where(kp2d[:, 2] < thresh, 0.0, kp2d[:, 2])  # suppress bad keypoints
                item['data']['kp2d'] = np.concatenate([kp2d[:, :2], kp2d_conf[:, None]], axis=1)
            return item
        dataset = dataset.map(bad_kp_suppressor)
    return dataset


def apply_bad_betas_suppressor(dataset:wds.WebDataset, thresh:float=3):
    ''' If the absolute value of betas is higher than the threshold, we regard it as bad betas. '''
    eps = 1e-6
    if thresh > eps:
        def bad_betas_suppressor(item):
                for side in ['orig', 'flip']:
                    has_betas = item['data'][f'{side}_has_betas']  # use this condition to save time
                    if thresh > 0 and has_betas:
                        betas_abs = np.abs(item['data'][f'{side}_betas'])
                        if (betas_abs > thresh).any():
                            item['data'][f'{side}_has_betas'] = False
                return item
        dataset = dataset.map(bad_betas_suppressor)
    return dataset


def apply_params_synchronizer(dataset:wds.WebDataset, poses_betas_simultaneous:bool=False):
    ''' Only when both poses and betas are valid, we regard them as valid. '''
    if poses_betas_simultaneous:
        def params_synchronizer(item):
            for side in ['orig', 'flip']:
                has_betas = item['data'][f'{side}_has_betas']
                has_poses = item['data'][f'{side}_has_poses']
                has_both = np.array(float((has_poses > 0) and (has_betas > 0)))
                item['data'][f'{side}_has_betas'] = has_both
                item['data'][f'{side}_has_poses'] = has_both
            return item
        dataset = dataset.map(params_synchronizer)
    return dataset


def apply_insuff_kp_filter(dataset:wds.WebDataset, cnt_thresh:int=4, conf_thresh:float=0.0):
    '''
    Counting the number of keypoints with confidence higher than the threshold.
    If the number is less than the threshold, we regard it has insufficient valid 2D keypoints.
    '''
    if cnt_thresh > 0:
        def insuff_kp_filter(item):
            kp_conf = item['data']['kp2d'][:, 2]
            return (kp_conf > conf_thresh).sum() > cnt_thresh
        dataset = dataset.select(insuff_kp_filter)
    return dataset


def apply_bbox_size_filter(dataset:wds.WebDataset, bbox_size_thresh:Optional[float]=None):
    if bbox_size_thresh:
        def bbox_size_filter(item):
            bbox_size = item['data']['scale'] * 200
            return bbox_size.min() > bbox_size_thresh  # ensure the lower bound is large enough
        dataset = dataset.select(bbox_size_filter)
    return dataset


def apply_reproj_err_filter(dataset:wds.WebDataset, thresh:float=0.0):
    ''' If the re-projection error is higher than the threshold, we regard it as bad sample. '''
    if thresh > 0:
        def reproj_err_filter(item):
            losses = item['data'].get('extra_info', {}).get('fitting_loss', np.array({})).item()
            reproj_loss = losses.get('reprojection_loss', None)
            return reproj_loss is None or reproj_loss < thresh
        dataset = dataset.select(reproj_err_filter)
    return dataset


def apply_invalid_betas_regularizer(dataset:wds.WebDataset, reg_betas:bool=False):
    ''' For those items with invalid betas, set them to zero. '''
    if reg_betas:
        def betas_regularizer(item):
            # Always have betas set to zero, and all valid.
            for side in ['orig', 'flip']:
                has_betas = item['data'][f'{side}_has_betas']
                betas = item['data'][f'{side}_betas']

                if not (has_betas > 0):
                    item['data'][f'{side}_has_betas'] = np.array(float((True)))
                    item['data'][f'{side}_betas'] = betas * 0
            return item
        dataset = dataset.map(betas_regularizer)
    return dataset


def apply_example_formatter(dataset:wds.WebDataset, cfg:DictConfig):
    ''' Format the item to the wanted format. '''

    def get_fmt_data(raw_item:Dict, augm_args:Dict, cfg:DictConfig):
        '''
        On the one hand, we will perform the augmentation to the image, on the other hand, we need to
        crop the image to the patch according to the bbox. Both processes would influence the position
        of related keypoints.
        After that, we need to align the 2D & 3D keypoints to the augmented image.
        '''
        # 1. Prepare the raw data that will be used in the following steps.
        img_rgb = raw_item['img']  # (H, W, 3)
        img_a = raw_item['mask'].astype(np.uint8)[:, :, None] * 255  # (H, W, 1) mask is 0/1 valued
        img_rgba = np.concatenate([img_rgb, img_a], axis=2)  # (H, W, 4)
        H, W, C = img_rgb.shape
        cx, cy = raw_item['data']['center']
        # bbox_size = (raw_item['data']['scale'] * 200).max()
        bbox_size = expand_to_aspect_ratio(
                raw_item['data']['scale'] * 200,
                target_aspect_ratio = cfg.policy.bbox_shape,
            ).max()

        kp2d_with_conf = raw_item['data']['kp2d'].astype('float32')  # (J, 3)
        kp3d_with_conf = raw_item['data']['kp3d'].astype('float32')  # (J, 4)

        # 2. [img][Augmentation] Extreme cropping according to the 2D keypoints.
        if augm_args['do_extreme_crop']:
            cx_, cy_, bbox_size_ = extreme_cropping_aggressive(cx, cy, bbox_size, bbox_size, kp2d_with_conf)
            # Only apply the crop if the results is large enough.
            THRESH = 4
            if bbox_size_ > THRESH:
                cx, cy = cx_, cy_
                bbox_size = bbox_size_

        # 3. [img][Augmentation] Shift the center of the image.
        cx += augm_args['tx_ratio'] * bbox_size
        cy += augm_args['ty_ratio'] * bbox_size

        # 4. [img][Format] Crop the image to the patch.
        img_patch_cv2, transform_2d = generate_image_patch_cv2(
                img          = img_rgba,
                c_x          = cx,
                c_y          = cy,
                bb_width     = bbox_size,
                bb_height    = bbox_size,
                patch_width  = cfg.policy.img_patch_size,
                patch_height = cfg.policy.img_patch_size,
                do_flip      = augm_args['do_flip'],
                scale        = augm_args['bbox_scale'],
                rot          = augm_args['rot_deg'],
            )  # (H, W, 4), (2, 3)

        img_patch_hwc = img_patch_cv2.copy()[:, :, :3]  # (H, W, C)
        img_patch_chw = img_patch_hwc.transpose(2, 0, 1).astype(np.float32)

        # 5. [img][Augmentation] Scale the color
        for cid in range(min(C, 3)):
            img_patch_chw[cid] = np.clip(
                    a     = img_patch_chw[cid] * augm_args['color_scale'][cid],
                    a_min = 0,
                    a_max = 255,
                )

        # 6. [img][Format] Normalize the color.
        img_mean = [255. * x for x in cfg.policy.img_mean]
        img_std  = [255. * x for x in cfg.policy.img_std]
        for cid in range(min(C, 3)):
            img_patch_chw[cid] = (img_patch_chw[cid] - img_mean[cid]) / img_std[cid]

        # 7. [kp2d][Alignment] Align the 2D keypoints.
        # 7.1. Flip.
        if augm_args['do_flip']:
            kp2d_with_conf = flip_lr_keypoints(kp2d_with_conf, W)
        # 7.2. Others. Transform the 2D keypoints according to the same transformation of image.
        J = len(kp2d_with_conf)
        kp2d_homo = np.concatenate([kp2d_with_conf[:, :2], np.ones((J, 1))], axis=1)  # (J, 3)
        kp2d = np.einsum('ph, jh -> jp', transform_2d, kp2d_homo)  # (J, 2)
        kp2d_with_conf[:, :2] = kp2d  # (J, 3)

        # 8. [kp2d][Format] Normalize the 2D keypoints position to [-0.5, 0.5]-visible space.
        kp2d_with_conf[:, :2] = kp2d_with_conf[:, :2] / cfg.policy.img_patch_size - 0.5

        # 9. [kp3d][Alignment] Align the 3D keypoints.
        # 9.1. Flip.
        if augm_args['do_flip']:
            kp3d_with_conf = flip_lr_keypoints(kp3d_with_conf, W)
        # 9.2. In-plane rotation.
        rot_mat = np.eye(3)
        # TODO: maybe this part can be packed to a single function.
        if not augm_args['rot_deg'] == 0:
            rot_rad = -augm_args['rot_deg'] * np.pi / 180
            sn, cs = np.sin(rot_rad), np.cos(rot_rad)
            rot_mat[0, :2] = [cs, -sn]
            rot_mat[1, :2] = [sn,  cs]
        kp3d_with_conf[:, :3] = np.einsum('ij, kj -> ki', rot_mat, kp3d_with_conf[:, :3])

        return img_patch_chw, kp2d_with_conf, kp3d_with_conf

    def example_formatter(raw_item):
        raw_data = raw_item['data']
        augm_args = get_augm_args(cfg.image_augmentation)

        params_side = 'flip' if augm_args['do_flip'] else 'orig'
        img_patch_chw, kp2d, kp3d = get_fmt_data(raw_item, augm_args, cfg)

        fmt_item = {}
        fmt_item['pid'] = raw_item['data']['pid']
        fmt_item['img_name'] = raw_item['img_name']
        fmt_item['img_patch'] = img_patch_chw
        fmt_item['kp2d'] = kp2d
        fmt_item['kp3d'] = kp3d
        fmt_item['augm_args'] = augm_args
        fmt_item['raw_skel_params'] = {
                'poses': raw_data[f'{params_side}_poses'],
                'betas': raw_data[f'{params_side}_betas'],
            }
        fmt_item['has_skel_params'] = {
                'poses': raw_data[f'{params_side}_has_poses'],
                'betas': raw_data[f'{params_side}_has_betas'],
            }
        fmt_item['updated_by_spin'] = False  # Only data updated by spin process will be marked as True.

        return fmt_item

    dataset = dataset.map(example_formatter)
    return dataset