Spaces:
Running
on
L4
Running
on
L4
File size: 14,722 Bytes
5ac1897 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 |
from lib.kits.basic import *
import math
import webdataset as wds
from .utils import (
get_augm_args,
expand_to_aspect_ratio,
generate_image_patch_cv2,
flip_lr_keypoints,
extreme_cropping_aggressive,
)
def apply_corrupt_filter(dataset:wds.WebDataset):
AIC_TRAIN_CORRUPT_KEYS = {
'0a047f0124ae48f8eee15a9506ce1449ee1ba669', '1a703aa174450c02fbc9cfbf578a5435ef403689',
'0394e6dc4df78042929b891dbc24f0fd7ffb6b6d', '5c032b9626e410441544c7669123ecc4ae077058',
'ca018a7b4c5f53494006ebeeff9b4c0917a55f07', '4a77adb695bef75a5d34c04d589baf646fe2ba35',
'a0689017b1065c664daef4ae2d14ea03d543217e', '39596a45cbd21bed4a5f9c2342505532f8ec5cbb',
'3d33283b40610d87db660b62982f797d50a7366b',
}
CORRUPT_KEYS = {
*{f'aic-train/{k}' for k in AIC_TRAIN_CORRUPT_KEYS},
*{f'aic-train-vitpose/{k}' for k in AIC_TRAIN_CORRUPT_KEYS},
}
dataset = dataset.select(lambda sample: (sample['__key__'] not in CORRUPT_KEYS))
return dataset
def apply_multi_ppl_splitter(dataset:wds.WebDataset):
'''
Each item in the raw dataset contains multiple people, we need to split them into individual samples.
Meanwhile, we also need to note down the person id (pid) for each sample.
'''
def multi_ppl_splitter(source):
for item in source:
data_multi_ppl = item['data.pyd'] # list of data for multiple people
for pid, data in enumerate(data_multi_ppl):
data['pid'] = pid
if 'detection.npz' in item:
det_idx = data['extra_info']['detection_npz_idx']
mask = item['detection.npz']['masks'][det_idx]
else:
mask = np.ones_like(item['jpg'][:, :, 0], dtype=bool)
yield {
'__key__' : item['__key__'] + f'_{pid}',
'img_name' : item['__key__'],
'img' : item['jpg'],
'data' : data,
'mask' : mask,
}
return dataset.compose(multi_ppl_splitter)
def apply_keys_adapter(dataset:wds.WebDataset):
''' Adapt the keys of the items, so we can adapt different version of dataset. '''
def keys_adapter(item):
data = item['data']
data['kp2d'] = data.pop('keypoints_2d')
data['kp3d'] = data.pop('keypoints_3d')
return item
return dataset.map(keys_adapter)
def apply_bad_pgt_params_nan_suppressor(dataset:wds.WebDataset):
''' If the poses or betas contain NaN, we regard it as bad pseudo-GT and zero them out. '''
def bad_pgt_params_suppressor(item):
for side in ['orig', 'flip']:
poses = item['data'][f'{side}_poses'] # (J, 3)
betas = item['data'][f'{side}_betas'] # (10,)
poses_has_nan = np.isnan(poses).any()
betas_has_nan = np.isnan(betas).any()
if poses_has_nan or betas_has_nan:
item['data'][f'{side}_has_poses'] = False
item['data'][f'{side}_has_betas'] = False
if poses_has_nan:
item['data'][f'{side}_poses'][:] = 0
if betas_has_nan:
item['data'][f'{side}_betas'][:] = 0
return item
dataset = dataset.map(bad_pgt_params_suppressor)
return dataset
def apply_bad_pgt_params_kp2d_err_suppressor(dataset:wds.WebDataset, thresh:float=0.1):
''' If the 2D keypoints error of one single person is higher than the threshold, we regard it as bad pseudo-GT. '''
if thresh > 0:
def bad_pgt_params_suppressor(item):
for side in ['orig', 'flip']:
if thresh > 0:
kp2d_err = item['data'][f'{side}_kp2d_err']
is_valid_pgt = kp2d_err < thresh
item['data'][f'{side}_has_poses'] = is_valid_pgt
item['data'][f'{side}_has_betas'] = is_valid_pgt
return item
dataset = dataset.map(bad_pgt_params_suppressor)
return dataset
def apply_bad_pgt_params_pve_max_suppressor(dataset:wds.WebDataset, thresh:float=0.1):
''' If the PVE-Max of one single person is higher than the threshold, we regard it as bad pseudo-GT. '''
if thresh > 0:
def bad_pgt_params_suppressor(item):
for side in ['orig', 'flip']:
if thresh > 0:
pve_max = item['data'][f'{side}_pve_max']
is_valid_pose = not math.isnan(pve_max)
is_valid_pgt = pve_max < thresh and is_valid_pose
item['data'][f'{side}_has_poses'] = is_valid_pgt
item['data'][f'{side}_has_betas'] = is_valid_pgt
return item
dataset = dataset.map(bad_pgt_params_suppressor)
return dataset
def apply_bad_kp_suppressor(dataset:wds.WebDataset, thresh:float=0.0):
''' If the confidence of a keypoint is lower than the threshold, we reset it to 0. '''
eps = 1e-6
if thresh > eps:
def bad_kp_suppressor(item):
if thresh > 0:
kp2d = item['data']['kp2d']
kp2d_conf = np.where(kp2d[:, 2] < thresh, 0.0, kp2d[:, 2]) # suppress bad keypoints
item['data']['kp2d'] = np.concatenate([kp2d[:, :2], kp2d_conf[:, None]], axis=1)
return item
dataset = dataset.map(bad_kp_suppressor)
return dataset
def apply_bad_betas_suppressor(dataset:wds.WebDataset, thresh:float=3):
''' If the absolute value of betas is higher than the threshold, we regard it as bad betas. '''
eps = 1e-6
if thresh > eps:
def bad_betas_suppressor(item):
for side in ['orig', 'flip']:
has_betas = item['data'][f'{side}_has_betas'] # use this condition to save time
if thresh > 0 and has_betas:
betas_abs = np.abs(item['data'][f'{side}_betas'])
if (betas_abs > thresh).any():
item['data'][f'{side}_has_betas'] = False
return item
dataset = dataset.map(bad_betas_suppressor)
return dataset
def apply_params_synchronizer(dataset:wds.WebDataset, poses_betas_simultaneous:bool=False):
''' Only when both poses and betas are valid, we regard them as valid. '''
if poses_betas_simultaneous:
def params_synchronizer(item):
for side in ['orig', 'flip']:
has_betas = item['data'][f'{side}_has_betas']
has_poses = item['data'][f'{side}_has_poses']
has_both = np.array(float((has_poses > 0) and (has_betas > 0)))
item['data'][f'{side}_has_betas'] = has_both
item['data'][f'{side}_has_poses'] = has_both
return item
dataset = dataset.map(params_synchronizer)
return dataset
def apply_insuff_kp_filter(dataset:wds.WebDataset, cnt_thresh:int=4, conf_thresh:float=0.0):
'''
Counting the number of keypoints with confidence higher than the threshold.
If the number is less than the threshold, we regard it has insufficient valid 2D keypoints.
'''
if cnt_thresh > 0:
def insuff_kp_filter(item):
kp_conf = item['data']['kp2d'][:, 2]
return (kp_conf > conf_thresh).sum() > cnt_thresh
dataset = dataset.select(insuff_kp_filter)
return dataset
def apply_bbox_size_filter(dataset:wds.WebDataset, bbox_size_thresh:Optional[float]=None):
if bbox_size_thresh:
def bbox_size_filter(item):
bbox_size = item['data']['scale'] * 200
return bbox_size.min() > bbox_size_thresh # ensure the lower bound is large enough
dataset = dataset.select(bbox_size_filter)
return dataset
def apply_reproj_err_filter(dataset:wds.WebDataset, thresh:float=0.0):
''' If the re-projection error is higher than the threshold, we regard it as bad sample. '''
if thresh > 0:
def reproj_err_filter(item):
losses = item['data'].get('extra_info', {}).get('fitting_loss', np.array({})).item()
reproj_loss = losses.get('reprojection_loss', None)
return reproj_loss is None or reproj_loss < thresh
dataset = dataset.select(reproj_err_filter)
return dataset
def apply_invalid_betas_regularizer(dataset:wds.WebDataset, reg_betas:bool=False):
''' For those items with invalid betas, set them to zero. '''
if reg_betas:
def betas_regularizer(item):
# Always have betas set to zero, and all valid.
for side in ['orig', 'flip']:
has_betas = item['data'][f'{side}_has_betas']
betas = item['data'][f'{side}_betas']
if not (has_betas > 0):
item['data'][f'{side}_has_betas'] = np.array(float((True)))
item['data'][f'{side}_betas'] = betas * 0
return item
dataset = dataset.map(betas_regularizer)
return dataset
def apply_example_formatter(dataset:wds.WebDataset, cfg:DictConfig):
''' Format the item to the wanted format. '''
def get_fmt_data(raw_item:Dict, augm_args:Dict, cfg:DictConfig):
'''
On the one hand, we will perform the augmentation to the image, on the other hand, we need to
crop the image to the patch according to the bbox. Both processes would influence the position
of related keypoints.
After that, we need to align the 2D & 3D keypoints to the augmented image.
'''
# 1. Prepare the raw data that will be used in the following steps.
img_rgb = raw_item['img'] # (H, W, 3)
img_a = raw_item['mask'].astype(np.uint8)[:, :, None] * 255 # (H, W, 1) mask is 0/1 valued
img_rgba = np.concatenate([img_rgb, img_a], axis=2) # (H, W, 4)
H, W, C = img_rgb.shape
cx, cy = raw_item['data']['center']
# bbox_size = (raw_item['data']['scale'] * 200).max()
bbox_size = expand_to_aspect_ratio(
raw_item['data']['scale'] * 200,
target_aspect_ratio = cfg.policy.bbox_shape,
).max()
kp2d_with_conf = raw_item['data']['kp2d'].astype('float32') # (J, 3)
kp3d_with_conf = raw_item['data']['kp3d'].astype('float32') # (J, 4)
# 2. [img][Augmentation] Extreme cropping according to the 2D keypoints.
if augm_args['do_extreme_crop']:
cx_, cy_, bbox_size_ = extreme_cropping_aggressive(cx, cy, bbox_size, bbox_size, kp2d_with_conf)
# Only apply the crop if the results is large enough.
THRESH = 4
if bbox_size_ > THRESH:
cx, cy = cx_, cy_
bbox_size = bbox_size_
# 3. [img][Augmentation] Shift the center of the image.
cx += augm_args['tx_ratio'] * bbox_size
cy += augm_args['ty_ratio'] * bbox_size
# 4. [img][Format] Crop the image to the patch.
img_patch_cv2, transform_2d = generate_image_patch_cv2(
img = img_rgba,
c_x = cx,
c_y = cy,
bb_width = bbox_size,
bb_height = bbox_size,
patch_width = cfg.policy.img_patch_size,
patch_height = cfg.policy.img_patch_size,
do_flip = augm_args['do_flip'],
scale = augm_args['bbox_scale'],
rot = augm_args['rot_deg'],
) # (H, W, 4), (2, 3)
img_patch_hwc = img_patch_cv2.copy()[:, :, :3] # (H, W, C)
img_patch_chw = img_patch_hwc.transpose(2, 0, 1).astype(np.float32)
# 5. [img][Augmentation] Scale the color
for cid in range(min(C, 3)):
img_patch_chw[cid] = np.clip(
a = img_patch_chw[cid] * augm_args['color_scale'][cid],
a_min = 0,
a_max = 255,
)
# 6. [img][Format] Normalize the color.
img_mean = [255. * x for x in cfg.policy.img_mean]
img_std = [255. * x for x in cfg.policy.img_std]
for cid in range(min(C, 3)):
img_patch_chw[cid] = (img_patch_chw[cid] - img_mean[cid]) / img_std[cid]
# 7. [kp2d][Alignment] Align the 2D keypoints.
# 7.1. Flip.
if augm_args['do_flip']:
kp2d_with_conf = flip_lr_keypoints(kp2d_with_conf, W)
# 7.2. Others. Transform the 2D keypoints according to the same transformation of image.
J = len(kp2d_with_conf)
kp2d_homo = np.concatenate([kp2d_with_conf[:, :2], np.ones((J, 1))], axis=1) # (J, 3)
kp2d = np.einsum('ph, jh -> jp', transform_2d, kp2d_homo) # (J, 2)
kp2d_with_conf[:, :2] = kp2d # (J, 3)
# 8. [kp2d][Format] Normalize the 2D keypoints position to [-0.5, 0.5]-visible space.
kp2d_with_conf[:, :2] = kp2d_with_conf[:, :2] / cfg.policy.img_patch_size - 0.5
# 9. [kp3d][Alignment] Align the 3D keypoints.
# 9.1. Flip.
if augm_args['do_flip']:
kp3d_with_conf = flip_lr_keypoints(kp3d_with_conf, W)
# 9.2. In-plane rotation.
rot_mat = np.eye(3)
# TODO: maybe this part can be packed to a single function.
if not augm_args['rot_deg'] == 0:
rot_rad = -augm_args['rot_deg'] * np.pi / 180
sn, cs = np.sin(rot_rad), np.cos(rot_rad)
rot_mat[0, :2] = [cs, -sn]
rot_mat[1, :2] = [sn, cs]
kp3d_with_conf[:, :3] = np.einsum('ij, kj -> ki', rot_mat, kp3d_with_conf[:, :3])
return img_patch_chw, kp2d_with_conf, kp3d_with_conf
def example_formatter(raw_item):
raw_data = raw_item['data']
augm_args = get_augm_args(cfg.image_augmentation)
params_side = 'flip' if augm_args['do_flip'] else 'orig'
img_patch_chw, kp2d, kp3d = get_fmt_data(raw_item, augm_args, cfg)
fmt_item = {}
fmt_item['pid'] = raw_item['data']['pid']
fmt_item['img_name'] = raw_item['img_name']
fmt_item['img_patch'] = img_patch_chw
fmt_item['kp2d'] = kp2d
fmt_item['kp3d'] = kp3d
fmt_item['augm_args'] = augm_args
fmt_item['raw_skel_params'] = {
'poses': raw_data[f'{params_side}_poses'],
'betas': raw_data[f'{params_side}_betas'],
}
fmt_item['has_skel_params'] = {
'poses': raw_data[f'{params_side}_has_poses'],
'betas': raw_data[f'{params_side}_has_betas'],
}
fmt_item['updated_by_spin'] = False # Only data updated by spin process will be marked as True.
return fmt_item
dataset = dataset.map(example_formatter)
return dataset |