Spaces:
Sleeping
Sleeping
File size: 14,923 Bytes
5ac1897 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 |
from lib.kits.basic import *
import torch
import numpy as np
import torch.nn.functional as F
from .definition import JOINTS_DEF, N_JOINTS, JID2DOF, JID2QIDS, DoF1_JIDS, DoF2_JIDS, DoF3_JIDS, DoF1_QIDS, DoF2_QIDS, DoF3_QIDS
from lib.utils.data import to_tensor
from lib.utils.geometry.rotation import (
matrix_to_euler_angles,
matrix_to_rotation_6d,
euler_angles_to_matrix,
rotation_6d_to_matrix,
)
# ====== Internal Utils ======
def axis2convention(axis:List):
''' [1,0,0] -> 'X', [0,1,0] -> 'Y', [0,0,1] -> 'Z' '''
if axis == [1, 0, 0]:
return 'X'
elif axis == [0, 1, 0]:
return 'Y'
elif axis == [0, 0, 1]:
return 'Z'
else:
raise ValueError(f'Unsupported axis: {axis}.')
def rotation_2d_to_angle(r2d:torch.Tensor):
'''
Extract single angle from a 2D rotation vector, which is the first column of a 2x2 rotation matrix.
### Args
- r2d: torch.Tensor
- shape = (...B, 2)
### Returns
- shape = (...B,)
'''
cos, sin = r2d[..., [0]], -r2d[..., [1]]
return torch.atan2(sin, cos)
# ====== Tools ======
OS2S_FLIP = [-1, 1, 1]
OS2S_CONV = 'YZX'
def real_orient_mat2q(orient_mat:torch.Tensor) -> torch.Tensor:
'''
The rotation matrix that SKEL uses is different from the SMPL's orientation matrix.
The rotation to representation functions below can not be used to transform the rotaiton matrix.
This function is used to convert the SMPL's orientation matrix to the SKEL's orientation q.
BUT, is that really important? Maybe we shouldn't align SMPL's orientation with SKEL's, can they be different?
### Args
- orient_mat: torch.Tensor, shape = (..., 3, 3)
### Returns
- orient_q: torch.Tensor, shape = (..., 3)
'''
device = orient_mat.device
flip = to_tensor(OS2S_FLIP, device=device) # (3,)
orient_ea = matrix_to_euler_angles(orient_mat.clone(), OS2S_CONV) # (..., 3)
orient_ea = orient_ea[..., [2, 1, 0]] # Re-permuting the order.
orient_q = orient_ea * flip[None]
return orient_q
def real_orient_q2mat(orient_q:torch.Tensor) -> torch.Tensor:
'''
The rotation matrix that SKEL uses is different from the SMPL's orientation matrix.
The rotation to representation functions below can not be used to transform the rotation matrix.
This function is used to convert the SKEL's orientation q to the SMPL's orientation matrix.
BUT, is that really important? Maybe we shouldn't align SMPL's orientation with SKEL's, can they be different?
### Args
- orient_q: torch.Tensor, shape = (..., 3)
### Returns
- orient_mat: torch.Tensor, shape = (..., 3, 3)
'''
device = orient_q.device
flip = to_tensor(OS2S_FLIP, device=device) # (3,)
orient_ea = orient_q * flip[None]
orient_ea = orient_ea[..., [2, 1, 0]] # Re-permuting the order.
orient_mat = euler_angles_to_matrix(orient_ea, OS2S_CONV)
return orient_mat
def flip_params_lr(poses:torch.Tensor) -> torch.Tensor:
'''
It flips the skel through exchanging the params of left part and right part of the body. It's useful for
data augmentation. Note that the 'left & right' defined when the body is facing z+ direction, this is
only important for the orientation.
### Args
- poses: torch.Tensor, shape = (B, L, 46) or (L, 46)
### Returns
- flipped_poses: torch.Tensor, shape = (B, L, 46) or (L, 46)
'''
assert len(poses.shape) in [2, 3] and poses.shape[-1] == 46, f'Shape of poses should be (B, L, 46) or (L, 46) but get {poses.shape}.'
# 1. Switch the value of each pair through re-permuting.
flipped_perm = [
0, 1, 2, # pelvis
10, 11, 12, # femur-r -> femur-l
13, # tibia-r -> tibia-l
14, # talus-r -> talus-l
15, # calcn-r -> calcn-l
16, # toes-r -> toes-l
3, 4, 5, # femur-l -> femur-r
6, # tibia-l -> tibia-r
7, # talus-l -> talus-r
8, # calcn-l -> calcn-r
9, # toes-l -> toes-r
17, 18, 19, # lumbar
20, 21, 22, # thorax
23, 24, 25, # head
36, 37, 38, # scapula-r -> scapula-l
39, 40, 41, # humerus-r -> humerus-l
42, # ulna-r -> ulna-l
43, # radius-r -> radius-l
44, 45, # hand-r -> hand-l
26, 27, 28, # scapula-l -> scapula-r
29, 30, 31, # humerus-l -> humerus-r
32, # ulna-l -> ulna-r
33, # radius-l -> radius-r
34, 35 # hand-l -> hand-r
]
flipped_poses = poses[..., flipped_perm]
# 2. Mirror the rotation direction through apply -1.
flipped_sign = [
1, -1, -1, # pelvis
1, 1, 1, # femur-r'
1, # tibia-r'
1, # talus-r'
1, # calcn-r'
1, # toes-r'
1, 1, 1, # femur-l'
1, # tibia-l'
1, # talus-l'
1, # calcn-l'
1, # toes-l'
-1, 1, -1, # lumbar
-1, 1, -1, # thorax
-1, 1, -1, # head
-1, -1, 1, # scapula-r'
-1, -1, 1, # humerus-r'
1, # ulna-r'
1, # radius-r'
1, 1, # hand-r'
-1, -1, 1, # scapula-l'
-1, -1, 1, # humerus-l'
1, # ulna-l'
1, # radius-l'
1, 1 # hand-l'
]
flipped_sign = torch.tensor(flipped_sign, dtype=poses.dtype, device=poses.device) # (46,)
flipped_poses = flipped_sign * flipped_poses
return flipped_poses
# def rotate_orient_around_z(q, rot):
# """
# Rotate SKEL orientation.
# Args:
# q (np.ndarray): SKEL style rotation representation (3,).
# rot (np.ndarray): Rotation angle in degrees.
# Returns:
# np.ndarray: Rotated axis-angle vector.
# """
# import torch
# from lib.body_models.skel.osim_rot import CustomJoint
# # q to mat
# root = CustomJoint(axis=[[0,0,1], [1,0,0], [0,1,0]], axis_flip=[1, 1, 1]) # pelvis
# q = torch.from_numpy(q).unsqueeze(0)
# q = q[:, [2, 1, 0]]
# Rp = euler_angles_to_matrix(q, convention="YXZ")
# # rotate around z
# R = torch.Tensor([[np.deg2rad(-rot), 0, 0]])
# R = axis_angle_to_matrix(R)
# R = torch.matmul(R, Rp)
# # mat to q
# q = matrix_to_euler_angles(R, convention="YXZ")
# q = q[:, [2, 1, 0]]
# q = q.numpy().squeeze()
# return q.astype(np.float32)
def params_q2rot(params_q:Union[torch.Tensor, np.ndarray]):
'''
Transform parts of the euler-like SKEL parameters representation all to rotation matrix.
### Args
- params_q: Union[torch.Tensor, np.ndarray], shape = (...B, 46) or (...B, 46)
### Returns
- shape = (...B, 24, 9) # 24 joints, each joint has a 3x3 matrix, but for some joints, the matrix is not all used.
'''
# Check the type and unify to torch.
is_np = isinstance(params_q, np.ndarray)
if is_np:
params_q = torch.from_numpy(params_q)
# Prepare for necessary variables.
Bs = params_q.shape[:-1]
ident = torch.eye(3, dtype=params_q.dtype).to(params_q.device) # (3, 3)
params_rot = ident.repeat(*Bs, N_JOINTS, 1, 1) # (...B, 24, 3, 3)
# Deal with each joints separately. Modified from the `skel_model.py` but a static version.
sid = 0
for jid in range(N_JOINTS):
joint_obj = JOINTS_DEF[jid]
eid = sid + joint_obj.nb_dof.item()
params_rot[..., jid, :, :] = joint_obj.q_to_rot(params_q[..., sid:eid])
sid = eid
if is_np:
params_rot = params_rot.detach().cpu().numpy()
return params_rot
def params_q2rep(params_q:Union[torch.Tensor, np.ndarray]):
'''
Transform the euler-like SKEL parameters representation to the continuous representation.
This function is not supposed to be used in the training process, but only for debugging.
The function that matters actually is the inverse of this function.
### Args
- params_q: Union[torch.Tensor, np.ndarray], shape = (...B, 46) or (...B, 46)
### Returns
- shape = (...B, 24, 6)
- Among 24 joints, for 3 DoF ones, all 6 values are used to represent the rotation;
but for 1 DoF joints, only the first 2 are used. The rest will be represented as zeros.
'''
# Check the type and unify to torch.
is_np = isinstance(params_q, np.ndarray)
if is_np:
params_q = torch.from_numpy(params_q)
# Prepare for necessary variables.
Bs = params_q.shape[:-1]
params_rep = params_q.new_zeros(*Bs, N_JOINTS, 6) # (...B, 24, 6)
# Deal with each joints separately. Modified from the `skel_model.py` but a static version.
sid = 0
for jid in range(N_JOINTS):
joint_obj = JOINTS_DEF[jid]
dof = joint_obj.nb_dof.item()
eid = sid + dof
if dof == 3:
mat = joint_obj.q_to_rot(params_q[..., sid:eid]) # (...B, 3, 3)
params_rep[..., jid, :] = matrix_to_rotation_6d(mat) # (...B, 6)
elif dof == 2:
# mat = joint_obj.q_to_rot(params_q[..., sid:eid]) # (...B, 3, 3)
# params_rep[..., jid, :] = matrix_to_rotation_6d(mat) # (...B, 6)
params_rep[..., jid, :2] = params_q[..., sid:eid]
elif dof == 1:
cos = torch.cos(params_q[..., sid])
sin = torch.sin(params_q[..., sid])
params_rep[..., jid, 0] = cos
params_rep[..., jid, 1] = -sin
sid = eid
if is_np:
params_rep = params_rep.detach().cpu().numpy()
return params_rep
# Deprecated.
def dof3_to_q(rot, axises:List, flip:List):
'''
Convert a rotation matrix to SKEL style rotation representation.
### Args
- rot: torch.Tensor, shape (...B, 3, 3)
- The rotation matrix.
- axises: list
- [[x0, y0, z0], [x1, y1, z1], [x2, y2, z2]]
- The axis defined in the SKEL's joint_dict. Only one of xi, yi, zi is 1, the others are 0.
- flip: list
- [f0, f1, f2]
- The flip value defined in the SKEL's joint_dict. fi is 1 or -1.
### Returns
- shape = (...B, 3)
'''
convention = [axis2convention(axis) for axis in reversed(axises)] # SKEL use euler angle in reverse order
convention = ''.join(convention)
q = matrix_to_euler_angles(rot[..., :, :], convention=convention) # (...B, 3)
q = q[..., [2, 1, 0]] # SKEL use euler angle in reverse order
flip = rot.new_tensor(flip) # (3,)
q = flip * q
return q
### Slow version, deprecated. ###
# def params_rep2q(params_rot:Union[torch.Tensor, np.ndarray]):
# '''
# Transform the continuous representation back to the SKEL style euler-like representation.
#
# ### Args
# - params_rot: Union[torch.Tensor, np.ndarray]
# - shape = (...B, 24, 6)
#
# ### Returns
# - shape = (...B, 46)
# '''
#
# # Check the type and unify to torch.
# is_np = isinstance(params_rot, np.ndarray)
# if is_np:
# params_rot = torch.from_numpy(params_rot)
#
# # Prepare for necessary variables.
# Bs = params_rot.shape[:-2]
# params_q = params_rot.new_zeros((*Bs, 46)) # (...B, 46)
#
# for jid in range(N_JOINTS):
# joint_obj = JOINTS_DEF[jid]
# dof = joint_obj.nb_dof.item()
# sid, eid = JID2QIDS[jid][0], JID2QIDS[jid][-1] + 1
#
# if dof == 3:
# mat = rotation_6d_to_matrix(params_rot[..., jid, :]) # (...B, 3, 3)
# params_q[..., sid:eid] = dof3_to_q(
# mat,
# joint_obj.axis.tolist(),
# joint_obj.axis_flip.detach().cpu().tolist(),
# )
# elif dof == 2:
# params_q[..., sid:eid] = params_rot[..., jid, :2]
# else:
# params_q[..., sid:eid] = rotation_2d_to_angle(params_rot[..., jid, :2])
#
# if is_np:
# params_q = params_q.detach().cpu().numpy()
# return params_q
def orient_mat2q(orient_mat:torch.Tensor):
''' This is a tool function for inspecting only. orient_mat ~ (...B, 3, 3)'''
poses_rep = orient_mat.new_zeros(orient_mat.shape[:-2] + (24, 6)) # (...B, 24, 6)
orient_rep = matrix_to_rotation_6d(orient_mat) # (...B, 6)
poses_rep[..., 0, :] = orient_rep
poses_q = params_rep2q(poses_rep) # (...B, 46)
return poses_q[..., :3]
# Pre-grouped the joints for different conventions
CON_GROUP2JIDS = {'YXZ': [0, 1, 6], 'YZX': [11, 12, 13], 'XZY': [14, 19], 'ZYX': [15, 20]}
CON_GROUP2FLIPS = {'YXZ': [[1.0, 1.0, 1.0], [1.0, 1.0, 1.0], [1.0, -1.0, -1.0]], 'YZX': [[1.0, 1.0, 1.0], [1.0, 1.0, 1.0], [1.0, 1.0, 1.0]], 'XZY': [[1.0, -1.0, -1.0], [1.0, 1.0, 1.0]], 'ZYX': [[1.0, 1.0, 1.0], [1.0, 1.0, 1.0]]}
# Faster version.
def params_rep2q(params_rot:Union[torch.Tensor, np.ndarray]):
'''
Transform the continuous representation back to the SKEL style euler-like representation.
### Args
- params_rot: Union[torch.Tensor, np.ndarray], shape = (...B, 24, 6)
### Returns
- shape = (...B, 46)
'''
with PM.time_monitor('params_rep2q'):
with PM.time_monitor('preprocess'):
params_rot, recover_type_back = to_tensor(params_rot, device=None, temporary=True)
# Prepare for necessary variables.
Bs = params_rot.shape[:-2]
params_q = params_rot.new_zeros((*Bs, 46)) # (...B, 46)
with PM.time_monitor(f'dof1&dof2'):
params_q[..., DoF1_QIDS] = rotation_2d_to_angle(params_rot[..., DoF1_JIDS, :2]).squeeze(-1)
params_q[..., DoF2_QIDS] = params_rot[..., DoF2_JIDS, :2].reshape(*Bs, -1) # (...B, J2=2 * 2)
with PM.time_monitor(f'dof3'):
dof3_6ds = params_rot[..., DoF3_JIDS, :].reshape(*Bs, len(DoF3_JIDS), 6) # (...B, J3=10, 3, 6)
dof3_mats = rotation_6d_to_matrix(dof3_6ds) # (...B, J3=10, 3, 3)
for convention, jids in CON_GROUP2JIDS.items():
idxs = [DoF3_JIDS.index(jid) for jid in jids]
mats = dof3_mats[..., idxs, :, :] # (...B, J', 3, 3)
qs = matrix_to_euler_angles(mats, convention=convention) # (...B, J', 3)
qs = qs[..., [2, 1, 0]] # SKEL use euler angle in reverse order
flips = qs.new_tensor(CON_GROUP2FLIPS[convention]) # (J', 3)
qs = qs * flips # (...B, J', 3)
qids = [qid for jid in jids for qid in JID2QIDS[jid]]
params_q[..., qids] = qs.reshape(*Bs, -1)
with PM.time_monitor('post_process'):
params_q = recover_type_back(params_q)
return params_q |